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ABSTRACT
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In software development, developers create bug reports within an Issue Tracking System (ITS)
to describe the cause, symptoms, severity, and other technical details of bugs. The ITS includes
reports of both intrinsic bugs (i.e., those originating within the software itself) and extrinsic bugs
(i.e., those arising from third-party dependencies). Although extrinsic bugs are not recorded in
the Version Control System (VCS), they can still affect Just-In-Time (JIT) bug prediction models
that rely on VCS-derived information.

Previous research has shown that excluding extrinsic bugs can significantly improve JIT bug
prediction model’s performance. However, manually classifying intrinsic and extrinsic bugs is
time-consuming and prone to errors. To address this issue, we propose a CAN model that inte-
grates the local feature extraction capability of TextCNN with the nonlinear approximation advan-
tage of the Kolmogorov-Arnold Network (KAN). Experiments on 1880 labeled data samples from
the OpenStack project demonstrate that the CAN model outperforms benchmark models such as
BERT and CodeBERT, achieving an accuracy of 0.7492 and an F1-score of 0.8072. By compar-
ing datasets with and without source code, we find that incorporating source code information
enhances model performance. Finally, using the Local Interpretable Model-agnostic Explanations
(LIME), an explainable artificial intelligence technique, we identify that keywords such as “test"
and “api" in bug reports significantly contribute to the prediction of extrinsic bugs.

1. Introduction

Bug reports are a central artifact in software maintenance, providing crucial information for understanding, localizing, and re-
solving bugs. Analyzing bug reports is an important and long-standing topic in software engineering research. While traditional bug
prediction research often assumes that every reported bug is linked to a corresponding bug-introducing change (BIC) in the Version
Control System (VCS), recent empirical studies have revealed that this assumption does not always hold [1-3]. In particular, prior
works [1,2] point out that some failures are not directly caused by changes visible in VCS, but rather by modifications in the context
or environment, such as dependency upgrades, that occur outside of the recorded code history. More explicitly, [3] distinguishes
between intrinsic bugs, whose bug-introducing changes can be identified in VCS, and extrinsic bugs, which are caused by external
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changes (e.g., errors in external APIs, compatibility issues, or evolving specifications) and therefore lack an explicit bug-introducing
change in VCS.

This distinction between intrinsic and extrinsic bugs is not merely academic. In Just-In-Time (JIT) bug prediction, a technique that
predicts whether a change under review will introduce a bug before it is committed, training datasets are constructed by linking bug-
fixing changes (BFCs) to their corresponding BICs. However, when extrinsic bugs are mislabeled as intrinsic, these datasets become
contaminated with noisy or incorrect BICs. Such contamination has been shown to significantly degrade model performance [3],
potentially leading to false alarms or missed bug-prone changes in practice. Given the increasing reliance on automated JIT bug
prediction in large-scale software projects, ensuring the quality of these datasets is critical.

A straightforward solution is to manually inspect and label bug reports to distinguish between intrinsic and extrinsic bugs, as
done in [3]. However, this approach is prohibitively time-consuming, error-prone, and does not scale to the volume of bug reports
generated in modern projects. Furthermore, the growing complexity of software ecosystems, characterized by rapid dependency
evolution, continuous integration pipelines, and heterogeneous runtime environments, makes such manual filtering increasingly
impractical. This creates an urgent need for automated methods to identify extrinsic bugs directly from bug report contents.

Despite the recognized impact of extrinsic bugs on predictive modeling, no prior work has systematically explored the use of
modern text classification techniques for their automatic identification. This gap is particularly notable given the rapid progress in
deep learning for software engineering, where pre-trained models of code [4-6] and natural language [7] have achieved state-of-the-
art results in tasks such as bug/defect prediction [8], clone detection [9] and code summarization [10]. Additionally, prior studies
on bug report quality [11-13] have shown that code snippets, stack traces, and other structured elements in bug reports can serve
as strong contextual signals for understanding bugs. However, their potential in distinguishing extrinsic from intrinsic bugs remains
unexplored.

To address these challenges, we propose a novel text classification approach, CAN, which integrates TextCNN [14] and KAN
[15], to automatically identify extrinsic bugs from bug reports. Using datasets from the OpenStack project, we evaluate multiple
representative models on both code-containing and code-absent datasets of bug reports, and employ LIME (Local Interpretable Model-
agnostic Explanations) [16] to explain the predictions of the best-performing model. The contributions of this paper are summarized
as follows:

* We extract bug reports from the OpenStack project and apply various text classification techniques to evaluate the effectiveness of
identifying extrinsic bugs. Experimental results indicate that text classification techniques can effectively identify extrinsic bugs
by analyzing bug reports. Our proposed CAN model demonstrates the best performance in terms of F1 score.

* We examine the role of source code in identifying extrinsic bugs. We hypothesize that valuable information can be extracted from
the source code present in bug reports and conduct experiments to compare the classification performance of datasets incorporating
and excluding code. The experimental results indicate that datasets incorporating source code as text enhance the models’ ability
to identify extrinsic bugs, while excluding source code generally degrades models’ performance.

e We employ LIME to analyze feature importance in the CAN model’s correct predictions. Experimental results show that words
such as “line" and “py" play a significant role in classifying intrinsic bugs, while terms like “test" and “api" strongly influence the
classification of extrinsic bugs.

By automating the identification of extrinsic bugs, our work addresses a critical bottleneck in preparing high-quality datasets
for JIT bug prediction, thereby contributing both to the theoretical understanding of bug origin classification and to the practical
improvement of predictive maintenance tools.

To support reproducibility and facilitate future research, we release a replication package that includes the labeled dataset,
preprocessing scripts, training and evaluation code of the CAN model. The resources are publicly available!, allowing researchers to
replicate our experiments and further explore extrinsic bug classification in different settings.

The rest of this paper is organized as follows. Section 2 presents the research questions and introduces experimental settings.
Experimental results and analysis, as well as discussion and implications, are described in Section 3 and Section 4, respectively.
Section 5 describes the threats to validity. Section 6 introduces related work. The conclusion and future work are presented in
Section 7.

2. Experimental setup

In this section, we firstly present research questions and corresponding motivations, and then introduce the processes of data
extraction, pre-processing, model construction, and performance evaluation. The overall framework of our experiment is depicted in
Fig. 1.

First, we extract bug reports from the VCS based on their identifiers and pre-process data to construct the training dataset. The
resulting dataset is then divided into two categories: “code-containing” (for bug reports including code snippets) and “code-absent”
(for bug reports without code snippets). Both categories are used in our experiments as follows: For RQ1, we evaluate models using the
complete dataset that includes both “code-containing” and “code-absent” bug reports. For RQ2, we specifically use the “code-absent”
dataset to train and evaluate models and compare their performance against models trained and evaluated on the complete dataset.

These datasets, along with a mapping dictionary that aligns reports with their respective labels, are used to train the classification
models. Finally, the trained models are evaluated on the test set, and we analyze the results.

1 https://github.com/Hugo-Liang/CAN.
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Fig. 1. The Overall framework of Our experiments.

2.1. Research questions

Our study aims to explore the effectiveness of using representative deep learning-based methods to predict extrinsic bugs through
bug reports. To achieve this, we propose the following research questions:

¢ RQ1: How effective are text classification models in identifying extrinsic bugs through bug reports?
Motivation: For JIT bug prediction scenarios, misidentifying BICs in extrinsic bugs degrades the quality of training datasets,
which in turn affects the performance of JIT models. To ensure high-quality datasets, it is crucial to identify and remove extrinsic
bugs. However, manually classifying bug reports is a labor-intensive task. Therefore, we investigate whether text classification
methods can be used to automate the identification of extrinsic bugs.

RQ2: Can datasets that include code as text improve the performance of models in identifying extrinsic bugs?
Motivation: Prior studies [11-13] have consistently shown that code snippets and other code-related elements in bug reports,
such as stack traces, file/class names, and code examples, provide strong contextual cues for understanding and localizing bugs.
Despite this evidence in bug localization research, the role of such code-related textual elements in extrinsic bug identification
remains unexplored. In practice, many real-world bug reports consist primarily of code snippets and output logs, which may
encode critical signals for distinguishing extrinsic bugs from intrinsic ones. Motivated by these findings, we investigate whether
code-containing bug reports can enhance model performance in identifying extrinsic bugs compared to the code-absent dataset.
¢ RQ3: How can the predictions of the proposed CAN model for identifying extrinsic bugs from bug reports be explained?

Motivation: In RQ1 and RQ2, we evaluated the effectiveness of several models under different scenarios in identifying extrinsic
bugs and found that our proposed CAN model achieves competitive performance. However, high predictive accuracy alone is not
sufficient for practical adoption, especially in software maintenance scenarios, where developers need to understand why a model
makes certain predictions before trusting and acting on them. Therefore, we focus on the interpretability of the CAN model by
employing LIME to analyze which textual features in bug reports contribute most to correct predictions.

3
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Table 1
The information of datasets. source: [3].

Component  Total  Intrinsic bug  Extrinsic bug

Swift 31 19 12

Nova 748 490 258

Neutron 648 359 289

Glance 104 43 61

Cinder 349 209 140
Table 2

Distribution of bug reports by maximum number of words.

Max # of Words ~ Number of Bug Reports  Percentage (%)

64 979 52.07
128 1422 75.64
256 1688 89.78
512 1842 97.98

2.2. Data extraction

In the ITS, issue reports can encompass various types, such as bug reports, improvement suggestions, new feature proposals, and
other records related to software development. Consistent with existing literature, this study focuses solely on bug reports.

For dataset selection, this study chooses the open-source project OpenStack as the research dataset. This choice is primarily
based on previous research findings, particularly the work of Rodriguez-Pérez et al. [3]. They extracted 1880 bug records from the
OpenStack project and invited two reviewers with at least a master’s degree in computer science to manually classify these bugs into
intrinsic and extrinsic bugs, with the corresponding quantities shown in Table 1. To enhance the consistency and reliability of the
classification results, the Krippendorff’s Alpha [17] method was employed for reliability assessment during the study, as reported in
the original dataset construction work [3].

With the information of the 1880 issues in the ITS and the VCS, we can extract their bug reports for obtaining useful text features.
Fig. 2(a) illustrates an example of a bug report without code in the OpenStack project, while Fig. 2(b) presents an example of a
bug report with code in the OpenStack project. In bug reports, the “summary” and “description” fields contain most of the useful
information for software analysis. Given the prevalence of bug reports containing code in real-world scenarios, we posit that such
reports can play a crucial role in identifying extrinsic bugs. Accordingly, we extract the textual descriptions from all bug reports to
capture relevant features. Subsequently, we construct code-containing and code-absent datasets of bug reports. These datasets will
be utilized for further analysis and model training in subsequent phases of our research.

Before training the model, we first performed a statistical analysis of the word count distribution in the bug reports (see Fig. 3)
to provide a basis for setting the padding length. The results show that most bug reports contain fewer than 150 words, with the
highest proportion falling within the 1-49 word range. The shortest report contains 2 words, while the longest contains 1582 words.
The median length is 60 words, and the average length is 107.8 words. Based on this distribution, we selected appropriate padding
lengths for subsequent experiments to balance information retention and computational efficiency.

To systematically investigate the impact of hyperparameters on model performance, different combinations of batch size and pad
size were tested. Specifically, batch size was set to 16 and 32 to compare the effects of small and medium batch sizes on parameter
update frequency, memory usage, and gradient estimation stability. At the same time, pad size was set to 64, 128, 256, and 512 based
on the bug report length distribution (see Table 2) to evaluate the effect of sequence truncation and padding on model performance.

2.3. Data pre-processing

This study uses BERT [7], CodeBERT [4], PLBART [5], and CodeT5 [6] as the baseline models. These models, trained on large-
scale corpora, exhibit strong language comprehension and are effective at capturing semantic features and contextual information. As
data processing procedures for pre-trained models are generally standardized, this section focuses on the data processing workflow
for TextCNN, highlighting its specific application in the text classification task.

In each experiment, the dataset is randomly divided into a training set (60 %), a validation set (20 %), and a test set (20 %). The
text data is then standardized and cleaned by removing special characters, punctuation marks, and converting all text to lowercase.
Following this preprocessing, words are extracted using spaces as delimiters and sorted by their frequency of occurrence. The 7000
most frequent words are retained to construct the vocabulary, while low-frequency words are discarded. To evaluate the quality of the
constructed vocabulary, pre-trained word embeddings (GloVe) are used for coverage analysis, achieving a coverage rate of 94.36 %,
thus providing a reliable foundation for subsequent text classification tasks.

During vocabulary extraction and word embedding retrieval, the text is mapped into a machine-readable format using the con-
structed vocabulary. Words not included in the vocabulary are replaced with special placeholders such as “<pad>” (used for padding)
and “<unk>” (indicating unknown words). Pre-trained word embeddings are then used to generate corresponding vectors for the
words in the vocabulary, forming the word embedding matrix. For words that are not present in the pre-trained embeddings, zero

4
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(a) An Example of a Bug Report Without Code in the OpenStack Project. Source: https://bugs.
launchpad.net/nova/+bug/1243037
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Bug Description

def add_extension(self, ext):
# Do nothing if the extension doesn't check out
if not self. check_extension(ext):

return

alias = ext.get_alias()
LOG.info(_('Loaded extension: %s'), alias)

if alias in self.extensions:
raise exceptions.Error(_("Found duplicate extension: %s") %
alias)
self.extensions[alias] = ext
(b) An Example of a Bug Report With Code in the OpenStack Project. Source: https://bugs.launchpad.
net/neutron/+bug/1242662

Fig. 2. Examples of bug reports in the openStack project.

vectors or randomly initialized vectors are typically used. To balance performance and storage efficiency, only words in the vocabu-
lary that match pre-trained embeddings are retained, and the processed embeddings are saved as a compact .npz file for efficient use
in subsequent model training and evaluation.

2.4. Model construction

This study compares the performance of the traditional deep learning model TextCNN with several classic pre-trained models
(such as BERT, CodeBERT, PLBART, and CodeT5) on the text classification task. Additionally, it draws inspiration from the KAN ar-
chitecture proposed by Liu et al. [15], which is based on the Kolmogorov-Arnold representation theorem. This theorem states that any
multivariate continuous function can be represented as a finite composition of univariate continuous functions, providing a theoretical
foundation for constructing neural network architectures with greater interpretability and strong approximation capabilities.

5
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Fig. 3. Distribution of bug report lengths (in Words).

On this basis, we propose a novel model architecture called CAN, which organically integrates TextCNN with KANLinear. The goal
is to enhance classification performance and model interpretability in the task of identifying extrinsic bugs. The following sections
introduce the basic principles of TextCNN and KANLinear, with a particular focus on the design of the CAN model.

(1) TextCNN

TextCNN [14] is a classical convolutional neural network model for text classification. Its core idea is to use multiple convolution
kernels of different sizes to extract features from text and capture local semantic information at various scales. The model first
transforms the input text into a word embedding matrix, then applies 2D convolution operations, followed by global max pooling to
extract the most salient local features. Finally, these features are passed through a fully connected layer to output the classification
result. The model has a simple structure and is computationally efficient, capable of automatically learning key information from text.
It is especially suitable for short-text classification tasks and has demonstrated strong performance across various natural language
processing scenarios.

(2) KANLinear

The KANLinear model is constructed based on the Kolmogorov-Arnold representation theorem [15]. Its core idea is to transform
complex multivariate continuous functions into compositions of multiple univariate continuous functions. The typical structure of
the model consists of three stages:

¢ Decomposition Stage: The input multivariate function is first decomposed into several univariate functions. This step leverages
the Kolmogorov-Arnold representation theorem.

¢ Univariate Function Processing: Each decomposed univariate function is processed individually. This part can adopt traditional
neural network architectures, such as fully connected layers, convolutional layers, etc.

* Combination Stage: The processed univariate functions are recombined to produce the final output.

Specifically, for any continuous function f(x, x,, ..., x,) defined on a closed interval, it can be expressed as a finite combination
of univariate continuous additive functions, as shown in Eq. 1:

2n+1 n
fGxp X)) = Y %(Z wp.q<xp>> W
q=1 p=1
where @, and v, , are continuous univariate functions, and x; are the input variables.
(3) CAN (Fusion of TextCNN and KANLinear)
To integrate the semantic feature extraction capability of TextCNN with the interpretable structure of KANLinear, this paper
proposes a novel model architecture called CAN, as illustrated in Fig. 4. The architectural design is as follows:

¢ Input Processing Stage: The input text is first converted into word vectors and fed into the TextCNN module via an embedding
layer.

* Feature Extraction Stage: Multiple convolution kernels of different sizes are used to perform 2D convolution on the word vectors
to extract local features from the text. These features are then compressed through max-pooling to form a fixed-length semantic
representation.
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Fig. 4. The framework of CAN model.

¢ KANLinear Integration Stage: The high-dimensional feature vector output from TextCNN is treated as a multivariate input.
The structural concept of KANLinear is introduced to perform structured univariate decomposition and recombination of these
features. This stage simulates the decomposition and composition mechanisms in the Kolmogorov-Arnold theorem, enhancing the
model’s ability to represent the intrinsic structure of the features.

¢ Output Stage: The features integrated by the KANLinear module are passed into a fully connected layer and a softmax function
to output the final bug category.

This fusion approach not only retains TextCNN’s efficient semantic information extraction capability, but also enhances the model’s
expression and interpretability of high-order feature relationships through KANLinear’s structural decomposition.

2.5. Performance indicators

To answer RQ1 and RQ2, we evaluate the models using four performance indicators. Their importance varies according to the
research focus of this study, identifying extrinsic bug reports, and the degree of class imbalance in the datasets.

2.5.1. Fl-score
In the context of extrinsic bug report identification, the F1-score is the most important metric, as it directly measures the overall
ability of the model to identify extrinsic bug reports (the positive class). It is the harmonic mean of Precision and Recall:

Precision = _Ir 2
TP+ FP
Recall = L, 3
TP+ FN

Fl-score = 2 X Recall x Pre.C}Slon .
Recall + Precision

A higher F1-score indicates a better balance between correctly detecting extrinsic bug reports and avoiding false positives.

2.5.2. Accuracy (ACC)
Accuracy measures the proportion of correctly classified instances among all predictions:
TP+TN

ACC = (5)
TP+TN +FP+FN

2.5.3. Matthews correlation coefficient (MCC)

The MCC is a balanced evaluation metric that considers both the positive and negative classes equally, with values in the range
[-1, 1]. Compared with Accuracy, MCC is more informative when the dataset is highly imbalanced, as it penalizes trivial “predict-all-
majority” strategies:

MCC = TPXTN—-FPXFN 6)

\/(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Since our datasets are not severely imbalanced, as the ratio of positive (extrinsic) to negative (intrinsic) is 2:3, Accuracy can still
be a useful overall performance metric. Note that both Accuracy and MCC are less critical than F1.

7
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Fig. 5. Performance of the six classification models.

2.5.4. Area under the ROC curve (AUC-ROC)

AUC-ROC measures the model’s discrimination ability across all classification thresholds. While it is threshold-independent and
useful for understanding boundary behavior, studies in bug prediction have noted that AUC-ROC may not directly reflect practical
classification performance at a specific decision threshold [18]. In our study, we consider it the least important among the four
metrics, though we still report it for completeness.

3. Experimental results and analysis

This section addresses the questions raised in Section 3 through experimental results. To investigate the performance of text
classification models in identifying extrinsic bugs from bug reports, we employed six different text classification algorithms and
applied them to our extracted dataset. To reduce the impact of experimental randomness, we repeated the experiments 10 times. The
performance of the models was evaluated using the metrics outlined in Section 4.4.

3.1. RQI: How effective are text classification models in identifying extrinsic bugs through bug reports?

Fig. 5 presents box plots of the evaluation metrics for all models under optimal parameters. Note that F1-score is emphasized due
to its primary relevance in evaluating extrinsic bug identification performance. From the F1 score box plot, the CAN model achieves
the best minimum and maximum performance with a median of 0.807. TextCNN, BERT and PLBART follow with medians of 0.8044,
0.804 and 0.8012, respectively. CodeBERT and CodeT5 have F1 medians that do not exceed 0.8. From the box plot of ACC, the
median accuracy of all models exceeds 0.7. The CAN model performs the best, with a median of 0.75. CodeBERT follows closely with
a median of 0.7465, although it has two potential outliers. CodeT5 shows the poorest performance, with a median of only 0.7194. In
the AUC box plot, CodeBERT and CAN perform excellently in classifying boundary identification, with median AUCs of 0.7413 and
0.7182, respectively. BERT, CodeT5, and PLBART have relatively lower AUC levels, with medians of 0.6942, 0.6944, and 0.6971,
respectively. In the MCC box plot, most models have medians above 0.42, but CodeT5 performs relatively poorly with a median of
only 0.3996. CodeBERT and CAN show stronger MCC scores, with medians of 0.4762 and 0.4637, respectively, though CodeBERT
has a potential outlier.



G. Fan, Y. Liang, L. Zu et al. Science of Computer Programming 249 (2026) 103410

Table 3

Statistical significance and effect size between CAN and CodeBERT.
Metric p-value  Significance  Effect Size r  Effect Level
F1-score’ 0.0003 wxx 0.7691 Large
Accuracy’ 0.0513  ns 0.3719 Medium
MCC* 0.1061 ns 0.2874 Small
AUC-ROCH# 0.0004 el 0.7606 Large

f CAN vs. CodeBERT, * CodeBERT vs. CAN

Significance markers: most significant (***) p < .001, highly signif-
icant (**) 0.001 < p < .01’, significant (*) 0.01 < p < .05, otherwise
“ns” (no significance).

Effect size levels: Large r> 0.5, Medium 0.3 <r <0.5, Small
0.1 < r £ 0.3, otherwise Negligible.

In summary, the overall performance of CAN and CodeBERT is the best. The CAN model maintains strong performance across all
evaluation metrics, while CodeBERT is particularly outstanding in boundary recognition capability. In contrast, while TextCNN and
PLBART perform well in some metrics, their overall stability and classification performance are slightly weaker.

To statistically validate the performance difference between CAN and CodeBERT, we performed a one-sided non-parametric
Wilcoxon Rank-Sum test (Mann-Whitney U Test) across 10 repeated runs and computed the effect size r. Specifically, r is computed
from the standardized z-score of the Wilcoxon Rank-Sum test using the formula r = \l/ilﬁ, where N denotes the total number of
observations across both groups.

The results (Table 3) show that CAN’s F1-score is significantly higher than CodeBERT’s (p = .0003, ***, r = 0.7691, Large effect).
This provides strong statistical evidence that CAN is better at identifying extrinsic bug reports. In contrast, Accuracy and MCC
differences between CAN and CodeBERT are not statistically significant, suggesting a comparable overall classification balance. For
AUC-ROC, CodeBERT significantly outperforms CAN (p = .0004, Large effect). However, as discussed in Section 2.5, this advantage
mainly reflects potential performance at alternative thresholds and does not outweigh CAN’s superiority in F1-score at the standard
0.5 threshold.

Overall, while CodeBERT benefits from pretraining on large-scale code-text corpora (potentially including overlaps with OpenStack
data), our from-scratch CAN model achieves significantly better F1-score in this task, indicating stronger practical utility for extrinsic
bug report identification.

RQ1 Conclusion: Text classification models can effectively identify extrinsic bugs from
bug reports. CAN demonstrates the best performance in terms of the most important
metric (F1-score), with a statistically significant and large effect size advantage over
CodeBERT, despite the latter’s edge in AUC-ROC.

3.2. RQ2: Can datasets that include code as text improve the performance of models in identifying extrinsic bugs?

To analyze RQ2, we conducted experiments using both code-containing and code-absent datasets. We performed 10 rounds of
experiments for each, using consistent model parameters as described in Section 3.1. The median values of each metric were computed
and compared.

We observe from the box plot (Fig. 6) that the CAN model demonstrates strong stability, despite the presence of multiple outliers. In
contrast, the CodeBERT model exhibits greater variability in performance, particularly in the ACC and F1 metrics, where fluctuations
are significant. For the F1 score, no model achieves a median above 0.8. The BERT model performs the best, with a median F1
score of 0.7892, followed by CAN at 0.7859. TextCNN and CodeBERT perform worse, with median F1 scores of 0.7622 and 0.7626,
respectively. In terms of ACC, all models achieve a median accuracy above 0.7. Among these models, BERT performs the best, with
a median ACC of 0.7270, followed by CAN. The CodeT5 model performs the worst, with a median ACC of only 0.7075. Regarding
AUC, the CodeBERT model achieves the highest median AUC of 0.7166, followed closely by PLBART with 0.7028 and BERT with
0.7002. Other models remain below 0.7 in this metric. Notably, the CAN model has three outliers, potentially impacting its overall
stability. In terms of MCC, most models achieve a median above 0.40. The CodeT5 model performs the worst, with a median MCC
of only 0.3823. CodeBERT outperforms other models in this metric, achieving a median MCC of 0.4285. Both BERT and CAN have a
median MCC of 0.409, demonstrating relatively strong overall performance.

To further analyze the impact of source code on model performance, we use histograms for comparison, as shown in Fig. 7.

The results from the histogram and data analysis clearly indicate that the performance of all models has deteriorated in F1 and ACC
scores, with TextCNN, CAN, and CodeBERT exhibiting the most substantial declines. This suggests that code data was instrumental
in the training and classification of these models. In terms of AUC, BERT and PLBART exhibit slight improvements; however, the
overall impact is marginal and does not offset the declines observed in other metrics.
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Fig. 6. Performance of the six classification models on code-absent dataset.

RQ2 Conclusion: The experimental results indicate that incorporating code into
the dataset enhances all models’ ability to identify extrinsic bugs. Conversely, removing
source code data detrimentally impacts the overall performance of the models.

3.3. RQ3: How can the predictions of the proposed CAN model for identifying extrinsic bugs from bug reports be explained?

To address research question RQ3, we employed the LIME method to evaluate the feature importance of correctly predicted
instances. Bug reports containing source code were selected as the dataset, which was then divided into training and test sets. The
CAN model was subsequently trained using this dataset. After training, each instance in the test dataset was fed into the model, and
LIME was utilized to extract and interpret the ten most important textual features.

By analyzing the visualization results of feature explanations for all instances in the test dataset (as shown in Fig. 8), it was
observed that certain specific terms had a significant impact on predicting extrinsic bugs, such as “test" illustrated in subfigures (b),
(f), and (g); “tests" in subfigures (c), (e), and (f), “api" in subfigures (b) and (g). In contrast, words like “py" and “line" were more
likely to lead the model toward predicting intrinsic bugs, as shown in subfigures (a), (d), and (h). Further examination of several
bug reports revealed that these key textual features frequently appeared in extrinsic bug reports, thereby playing a crucial role in the
model’s prediction outcomes.

We subsequently conducted a detailed examination of these specific bug report instances. The results indicate that: “test" often
appears in contexts related to testing, suggesting that the bug may be due to changes in test cases or test environments. “api" refers to
interactions between extrinsic systems or services and the software. Bug reports frequently describe problems such as API call failures
or interface incompatibilities. “py" is commonly found in contexts related to Python code or scripts. Intrinsic bugs often involve
issues in code implementation or errors discovered during the development process. “line" often refers to specific code line numbers
mentioned in bug reports, which helps developers quickly locate the issue in the code.

RQ3 Conclusion: Experimental results indicate that words such as
“line” and “py” significantly impact the prediction of intrinsic bugs,
while terms like “test” and “api” have a substantial influence on the
prediction of extrinsic bugs.

10
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Fig. 7. Model performance comparison on code-containing vs. code-absent datasets.

4. Discussion and implication

4.1. Discussionl: The impact of batch size and pad size on model performance

This experiment investigates the impact of batch size and pad size on model performance. Different combinations of batch size

and pad size were tested, as detailed below:

e batch size: 16, 32
» pad size: 64, 128, 256, 512

Multiple rounds of experiments were conducted to observe their effects on the models’ F1 score (the primary evaluation metric), as
well as on ACC, MCC, and AUC. The specific experimental results are shown in Table 4. The bold values indicate the best performance
achieved under each metric within the tested settings. Due to GPU resource limitations, the experiment with a batch size of 32 and
a pad size of 512 could not be completed, and data for this combination is missing.

From the analysis of the experimental data, the following conclusions can be drawn:

e Pad size has a significant impact on model performance: In most models, as pad size increases, F1, ACC, MCC, and AUC
metrics tend to rise. Specifically, CodeBERT, CodeT5, and CAN models perform best with a pad size of 256, but when pad size
is increased to 512, performance decreases, likely due to the introduction of more padding, which increases noise. However,
TextCNN, PLBART, and BERT models continued to improve as pad size increased further.

¢ The impact of batch size is relatively small: Overall, models performed better with a batch size of 16 compared to a batch size
of 32. This may be because a smaller batch size helps the model learn sample features in more detail, but it also increases training

time.

4.2. Discussion2: The effectiveness of each component in our proposed CAN model

To comprehensively evaluate the actual contribution of each key component in the CAN model to overall performance, we designed
a series of ablation experiments. Under a consistent input configuration, we either replaced or removed the TextCNN feature extraction
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Table 4
Impact of batch size and pad size on model performance.
Model batch size pad size ACC AUC F1 MCC
64 0.7117 0.6839 0.7730 0.3864
16 128 0.7120 0.6889 0.7697 0.3911
256 0.7239 0.6884 0.7891 0.4059
BERT 512 0.7335 0.6943 0.7996 0.4266
64 0.6819 0.6563 0.7331 0.3410
64 128 0.7011 0.6786 0.7604 0.3681
256 0.7296 0.6973 0.7916 0.4167
64 0.6905 0.7003 0.7222 0.3915
16 128 0.7259 0.7332 0.7590 0.4546
256 0.7410 0.7375 0.7810 0.4682
CodeBERT 512 0.7335 0.6943 0.7996 0.4266
64 0.6975 0.6931 0.7426 0.3817
64 128 0.7228 0.7145 0.7692 0.4244
256 0.7153 0.6931 0.7724 0.3961
64 0.7122 0.6753 0.7811 0.3789
16 128 0.7128 0.6906 0.7705 0.3886
256 0.7181 0.6899 0.7696 0.3950
CodeT5 512 0.7138 0.6891 0.7727 0.3913
64 0.6612 0.6078 0.7536 0.2512
64 128 0.6976 0.6641 0.7672 0.3469
256 0.6856 0.6474 0.7612 0.3166
64 0.7107 0.6893 0.7794 0.3868
16 128 0.7150 0.6902 0.7836 0.3979
256 0.7210 0.6894 0.7850 0.3998
PLBART 512 0.7357 0.6979 0.8001 0.4309
64 0.7023 0.6865 0.7658 0.3709
64 128 0.7112 0.6859 0.7761 0.3845
256 0.7211 0.6950 0.7844 0.4015
64 0.7284 0.6929 0.7932 0.4143
16 128 0.7260 0.6973 0.7865 0.4120
256 0.7391 0.7056 0.8004 0.4381
TextCNN 512 0.7404 0.7051 0.8026 0.4410
64 0.7269 0.6933 0.7904 0.4123
64 128 0.7327 0.6955 0.7977 0.4236
256 0.7369 0.7088 0.7943 0.4394
64 0.7207 0.6860 0.7866 0.3966
16 128 0.7269 0.6987 0.7868 0.4140
256 0.7492 0.7175 0.8072 0.4610
CAN 512 0.7468 0.7147 0.8057 0.4554
64 0.7208 0.6978 0.7775 0.4064
64 128 0.7282 0.6966 0.7903 0.4148
256 0.7399 0.7121 0.7972 0.4420
Table 5
Effectiveness of each component in the CAN model.
Feature Extractor Classifier ACC AUC F1 MCC
TextCNN KANLinear 0.7492 0.7175 0.8072 0.4610
TextCNN Linear 0.7404 0.7051 0.8026 0.4410
DPCNN KANLinear 0.7073 0.6691 0.7797 0.3547
DPCNN Linear 0.6813 0.6518 0.7646 0.3222

module and the KANLinear classification module, and observed the performance variations, thereby verifying the impact of each sub-

module on the final classification results.

Table 5 presents the performance comparison of different combinations of feature extraction and classification modules. Similarly,
bold values mark the highest scores obtained for each metric. Overall, the combination of TextCNN + KANLinear achieved the best
results across all evaluation metrics (F1, ACC, MCC, AUC), with an F1 score of 0.8072, an accuracy of 0.7492, an MCC of 0.4610, and
an AUC of 0.7175. When replacing the KANLinear classifier with a simple linear layer, the TextCNN-based model still maintained
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relatively high performance (e.g., F1 = 0.8026, ACC = 0.7404), but all metrics showed slight declines, indicating that the KANLinear
module indeed enhances the model’s classification capability.

Furthermore, we also introduced DPCNN [19] as an alternative feature extractor to validate the generality of the KANLinear
module. DPCNN (Deep Pyramid Convolutional Neural Network) is a low-complexity word-level deep CNN architecture designed
for text categorization, capable of capturing long-range dependencies and global text representations through a pyramidal structure
with relatively low computational cost. It has been shown to outperform several state-of-the-art models on benchmark datasets
for sentiment classification and topic categorization. In our experiments, DPCNN + KANLinear outperformed DPCNN + Linear,
particularly in ACC and MCC (improving by 3.82 % and 10.09 %, respectively), further confirming the effectiveness of the KANLinear
classifier across different feature extractors. However, the overall performance of DPCNN in our task was still lower than TextCNN,
which may be due to weaker structural suitability for the specific characteristics of bug reports classification.

In summary, the results demonstrate that TextCNN and KANLinear play crucial roles in feature extraction and classification mod-
eling, respectively. Their combination yields the best classification performance, thereby validating the rationality and effectiveness
of the CAN model architecture.

4.3. Implication

Our findings indicate that text classification models are highly effective in identifying and predicting extrinsic bugs. Among them,
the CAN model performed the best, achieving an ACC of 0.7492 and an F1 score of 0.8072. Consequently, this model was utilized
in RQ3 experiments. Analysis of feature importance for test dataset instances revealed that certain key textual features significantly
affect the prediction of extrinsic/intrinsic bugs. As illustrated in Fig. 8, these crucial semantic features can differentiate between
intrinsic and extrinsic bugs but may sometimes lead to incorrect predictions. This necessitates further exploration into text feature
engineering and model tuning to enhance robustness and accuracy.

Moreover, our research confirms that including source code in bug reports can enhance model prediction performance. Bug
reports created in ITSs often include descriptions and stack traces (optional). The description, recorded by the submitter, explains
observed behavior during a crash and details the bug. Stack traces are a series of function calls from the memory stack during the
crash. In practice, many bug report submitters only include stack traces or source code as the bug description. Nayrolles et al. [20]
demonstrated that stack traces are useful for understanding bugs. Inspired by this, and given that stack traces may provide valuable
information, we hypothesized that other technical details (e.g., source code) might also aid in identifying extrinsic bugs and designed
experiments accordingly.

It is important to note that our approach might not effectively extract useful information from source code or stack traces that aids
in identifying extrinsic bugs. We treated the source code merely as text, meaning that its deeper semantic information has not been
fully explored. Programs have specific syntactic structures and rich semantic information hidden in abstract syntax trees (AST), which
are crucial representations of source code. Therefore, we believe further exploration is needed to utilize structural information within
source code. We need to find corresponding links in the software system to more accurately determine whether a bug is intrinsic or
extrinsic, rather than treating the source code as plain text.

Over the past 20 years, many studies have used automated techniques to collect JIT bug prediction datasets to address bug repair
submissions, bug-introducing changes, and bug reports. These datasets have been used to train JIT bug prediction models. However,
Rodriguez Pérez et al. [3] demonstrated that JIT bug prediction models trained only on intrinsic bugs can more accurately reflect
real-world scenarios, as indicated by different (usually higher) AUC values. This suggests that extrinsic bugs should be excluded
to reduce the predictive capacity loss of JIT bug prediction models. Consequently, hundreds of studies on JIT bug prediction [21]
might be less accurate than expected, as they did not use data distinguishing between intrinsic and extrinsic bugs for model training.
Researchers and practitioners should ensure high-quality data to avoid noise affecting model training. Therefore, we recommend
adding an intrinsic/extrinsic field to new bug reports and using better-performing classifiers to automatically generate and label
historical data.

5. Threats to validity
5.1. Internal validity

The first threat to internal validity primarily stems from potential errors in our experiments and biases introduced by random-
ization. To address this threat, we manually checked the completeness of the extracted bug reports and the labels of the datasets
used in the study. We then re-evaluated the implementation process and reported the average performance across 10 experiments.
Additionally, issues related to the mapping dictionary we designed also pose a threat. Upon examining the bug reports in the dataset,

we found many stop words, such as “hello", “why", and “how", that do not provide useful textual features and negatively affect the
prediction of extrinsic bugs. These stop words were removed before mapping string tokens.

5.2. External validity

The primary threat to external validity concerns the generalizability of our research findings. Our dataset consists of only 1880
issues from the OpenStack project and was manually labeled by two master’s students specializing in Computer Science and Tech-
nology. Due to the relatively small size of the dataset and its extraction from a single project, the consistency of the labels requires
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further investigation. Moreover, since OpenStack is a large-scale Python-based open-source project, the results may be biased toward
the characteristics of Python projects. This limits the generalizability of our findings to projects developed in other programming
languages such as Java, C+ +, or JavaScript, where bug report structures, vocabulary, and code-related expressions may differ. Ad-
ditionally, involving more experts in the labeling process and applying semi-supervised or active learning strategies will help improve
the reliability and scalability of the labeling process in diverse contexts.

5.3. Construct validity

Threats to construct validity concern whether the evaluation metrics accurately reflect the prediction performance of classifiers.
ACC reflects the proportion of correct predictions made by the model. However, this metric assumes that different classes are balanced,
meaning it becomes unreliable when the dataset is imbalanced. F1-score is the harmonic mean of precision and recall, but it cannot
fully address cases where one model has high precision but low recall, while another has low precision but high recall, yet both
achieve similar F1-scores. In contrast, AUC and MCC can mitigate these issues, as they are not sensitive to class imbalances and
do not depend on threshold selection. Therefore, we use four indicators-F1, ACC, MCC, and AUC-to comprehensively evaluate the
performance of the models.

Another construct validity threat relates to the interpretability method used in our study. We adopted LIME primarily because
of its adoption in prior JIT bug prediction research (e.g., JITLine) and supporting empirical findings that classifier-agnostic methods
such as LIME, SHAP [22], and BreakDown [23] can yield consistent feature importance rankings [24]. While we acknowledge that
alternative methods like SHAP offer stronger theoretical grounding and may produce more stable explanations, incorporating multiple
explainers would require significant additional experimental effort and computational resources. Given that our LIME-based results,
combined with manual inspection, produce reasonable and coherent explanations, we did not re-implement the analysis with other
interpretability tools. We explicitly acknowledge this as a limitation to encourage future studies to perform more comprehensive and
systematic comparative evaluations of multiple explanation techniques in this domain.

6. Related work
6.1. Just-in-time bug prediction

The concept of Just-In-Time (JIT) bug prediction was first introduced by Mockus and Weiss [25], who designed change metrics
to predict whether a software change would introduce a bug. Traditional approaches relied heavily on machine learning models
that assumed the characteristics of past and future bug-introducing changes (BICs) are similar. Early studies extracted predictive
attributes from version control systems (VCSs), issue tracking systems (ITSs) [26-28], and code review systems [29,30] to train
classifiers [31,32].

With the rise of deep learning, models such as DeepJIT, the first deep learning framework for JIT prediction based on TextCNN
[14], and JITGNN, a graph neural network-based approach, demonstrated the ability to capture complex structural and semantic
information in code changes. More recent methods have leveraged pre-trained models of code to capture richer semantic and con-
textual information. JIT-Fine [33] and JIT-Smart [34] adopt CodeBERT [4] multi-task learning to jointly address bug prediction
and localization, significantly improving performance over traditional baselines. Later, general-purpose pre-trained models of code
such as PLBART [5] and CodeT5 [6] have shown strong performance across code understanding and generation tasks. These models
represent distinct categories of deep learning approaches and provide strong baselines for evaluating text classification in software
engineering, making them natural choices for our experiments designed for RQ1 and RQ2.

Interpretability has also gained attention in JIT bug prediction. JITLine, for example, applied LIME to generate line-level bug
localization explanations in addition to predictions. Yang et al. [24] conducted a large-scale empirical study showing that classifier-
agnostic techniques such as LIME, BreakDown, and SHAP yield consistent feature importance rankings, reinforcing their reliability.
This interpretability perspective provides the methodological basis for our RQ3, where we use LIME to explain the predictions of our
proposed CAN model.

6.2. Bug reports and extrinsic bug identification

Beyond code change metrics, bug reports in ITS contain rich textual information that can be leveraged for bug prediction. A
growing body of work has examined the classification of bug origins, the quality of bug reports, and their impact on predictive
modeling.

Several studies [1-3] distinguish between intrinsic bugs (originating from internal code changes and associated with a BIC) and
extrinsic bugs (originating from external factors such as API changes, dependency updates, or environmental variations, lacking a
BIC but having a first-failing change). These works highlight the limitations of SZZ-based BIC identification and demonstrate that
removing extrinsic bugs from datasets can significantly improve JIT model performance. Our RQ1 is directly motivated by these
findings: rather than manually filtering extrinsic bugs, we aim to automatically identify them from bug report contents.

Another related challenge is misclassification in bug reports for bug prediction and localization. Prior studies [35,36] show that
reports mislabeled as bugs but actually describing feature requests, documentation updates, or other maintenance tasks can distort
both bug prediction and localization results. Understanding and mitigating such noise is essential for building robust classification
models.
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The quality of bug reports has also been studied extensively. High-quality reports, those including steps to reproduce stack traces,
and particularly code examples, have been shown to facilitate bug localization and reduce fixing time [11-13]. For example, Zim-
mermann et al. [11] found that developers favored bug reports containing code snippets or stack traces, as these structured elements
often clarified the underlying cause of a bug. Similarly, Mills et al. [12] demonstrated that bug reports with explicit localization hints,
including code fragments, significantly improved the accuracy of bug localization tasks. Furthermore, Zhang et al. [13] reported that
most contributors for both desktop software and mobile apps believed that stack traces, code examples, and patches shortened bug-
fixing time and revealed bug causes more clearly. These insights form the foundation for our RQ2, where we investigate whether
incorporating code as text in datasets improves extrinsic bug identification.

In conclusion, previous works have either (1) classified bug origins and analyzed their impact on prediction models [1-3], (2)
studied quality indicators in bug reports [11] and their role in localization performance [12,13], or (3) investigated the negative
effects of mislabeled reports [35,36]. However, none has addressed the automatic identification of extrinsic bugs from bug reports
using modern text classification models. Our work fills this gap by systematically exploring the effectiveness of representative deep
learning-based classification models in extrinsic bug classification, examining the effect of including code snippets in bug report
contents, and applying LIME to explain predictions of our proposed CAN model combining TextCNN and KAN.

7. Conclusion and future work

Bug reports are created by software developers within an ITS to describe technical details such as the cause, symptoms, severity,
and other features of bugs. An ITS includes bug reports for both intrinsic and extrinsic bugs. Intrinsic bugs refer to errors with explicit
BICs in the VCS. Extrinsic bugs are primarily caused by external factors of the project and cannot be matched with a BIC.

Rodriguez-Pérez et al. [3] demonstrated through a case study of the OpenStack system that intrinsic and extrinsic bugs are different.
JIT bug prediction models trained only on intrinsic bugs can more accurately reflect the real world, as indicated by higher AUC
values. This suggests that extrinsic bugs should be excluded to minimize the loss of predictive power in JIT bug prediction models.
Consequently, hundreds of studies on JIT bug prediction [21] may not be as accurate as possible because they did not use data
distinguishing between intrinsic and extrinsic bugs to train their models. Manual analysis of bugs and their reports is labor-intensive
and time-consuming, and models trained solely on intrinsic bugs typically achieve higher AUC scores. Therefore, we use various
text classification techniques to automate the classification of bugs into intrinsic or external categories. Our experiments validate
the effectiveness of different text classification models in distinguishing between intrinsic and extrinsic bugs. The results show that
incorporating source code in bug reports leads to improved classification performance. Specifically, the CAN model performed the
best in classification, with an ACC of 0.7492 and an F1 score of 0.8072.

Our research also indicates that certain key semantic features play a significant role in distinguishing between intrinsic and
extrinsic bugs. For example, words like “test” and “api" have a notable impact on predicting extrinsic bugs, while “line" and “py" are
more influential in predicting intrinsic bugs. Additionally, the results reveal that source code information can help identify extrinsic
bugs in some cases, but its deeper semantic information has not been fully exploited. Future research should further explore how to
leverage structural information in source code.

Future work includes: (1) Applying our method to datasets from other ecosystems, including Java-based projects (e.g., JDT,
Platform) and cross-language repositories, to evaluate the robustness of the proposed model across different language domains; (2)
Utilizing more semi-supervised and unsupervised learning methods to identify extrinsic bugs, thereby reducing the cost of manual
labeling; (3) Exploring the effectiveness of our methods in real-world development scenarios.
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