'.) Check for updates

Expert Systems

WILEY

Expert Systems &

| orRIGINAL ARTICLE

Automatic Code Summarization Using Abbreviation
Expansion and Subword Segmentation

Yu-Guo Liang! | Gui-Sheng Fan! | Hui-Qun Yu! | Ming-Chen Li' ©¥ | Zi-Jie Huang!?

1School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China | 2Shanghai Key Laboratory of
Computer Software Testing and Evaluating, Shanghai Development Center of Computer Software Technology, Shanghai, China

Correspondence: Gui-Sheng Fan (gsfan@ecust.edu.cn) | Hui-Qun Yu (yhq@ecust.edu.cn)
Received: 24 June 2024 | Revised: 22 November 2024 | Accepted: 26 December 2024

Funding: This work was supported by National Natural Science Foundation of China (No. 62372174), the Computational Biology Program of Shanghai
Science and Technology Commission (No. 23JS1400600), the Capacity Building Project of Local Universities Science and Technology Commission

of Shanghai Municipality (No. 22010504100), the Research Programme of National Engineering Laboratory for Big Data Distribution and Exchange
Technologies (No. 2021-GYHLW-01007), and the Shanghai 2024 Science and Technology Innovation Action Plan Star Cultivation (Sailing Program, No.
24YF2719900 and 24YF2720000).

Keywords: automatic code summarization | code abbreviation expansion | deep learning | program understanding | subword segmentation

ABSTRACT

Automatic code summarization refers to generating concise natural language descriptions for code snippets. It is vital for im-
proving the efficiency of program understanding among software developers and maintainers. Despite the impressive strides
made by deep learning-based methods, limitations still exist in their ability to understand and model semantic information
due to the unique nature of programming languages. We propose two methods to boost code summarization models: context-
based abbreviation expansion and unigram language model-based subword segmentation. We use heuristics to expand abbrevi-
ations within identifiers, reducing semantic ambiguity and improving the language alignment of code summarization models.
Furthermore, we leverage subword segmentation to tokenize code into finer subword sequences, providing more semantic infor-
mation during training and inference, thereby enhancing program understanding. These methods are model-agnostic and can
be readily integrated into existing automatic code summarization approaches. Experiments conducted on two widely used Java
code summarization datasets demonstrated the effectiveness of our approach. Specifically, by fusing original and modified code
representations into the Transformer model, our Semantic Enhanced Transformer for Code Summarizsation (SETCS) serves as
a robust semantic-level baseline. By simply modifying the datasets, our methods achieved performance improvements of up to
7.3%, 10.0%, 6.7%, and 3.2% for representative code summarization models in terms of BLEU-4, METEOR, ROUGE-L and SIDE,
respectively.

1 | Introduction

Program understanding is essential to software development
and maintenance (Storey 2005). The presence of high-quality
natural language descriptions for code can significantly enhance
the readability and understandability of the program, thereby
boosting the work efficiency of software development and main-
tenance personnel (He 2019). Automatic code summarization,

© 2025 John Wiley & Sons Ltd.

as a task of automatically generating corresponding functional
descriptions for code, is currently a hot research topic in the
field of program understanding (Moreno and Marcus 2018; Rai,
Belwal, and Gupta 2022).

Asadvancesin deep learning techniques and the enrichment of
open-sourced code summarization corpora, data-driven deep
learning methods have significantly improved the efficiency

Expert Systems, 2025; 42:13835
https://doi.org/10.1111/exsy.13835

1 of 20

https://doi.org/10.1111/exsy.13835
https://orcid.org/0009-0002-8738-2891
mailto:
mailto:
https://orcid.org/0000-0001-6862-0052
https://orcid.org/0000-0002-8911-9889
mailto:gsfan@ecust.edu.cn
mailto:yhq@ecust.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fexsy.13835&domain=pdf&date_stamp=2025-01-08

and quality of auto-generated summaries. Iyer et al. (2016) pi-
oneered the integration of deep neural networks in automatic
code summarization, employing the sequence-to-sequence
(Seq2Seq) model within the end-to-end NMT framework to
generate code summaries. Since the Transformer (Vaswani
et al. 2017) emerged in recent years has advantages in rep-
resenting long sequences, researchers have continuously pro-
posed advanced code summarization frameworks based on
this prevailing model. Most deep learning based automatic
code summarization approaches draw inspiration from NMT
solutions in NLP, and concentrate on exploring the relation-
ship between code-related semantic as well as structural in-
formation and natural language descriptions (Rai, Belwal,
and Gupta 2022).

Pre-trained code models, which build upon the architectures
of existing deep learning models, are initially trained on exten-
sive multi-language datasets and subsequently fine-tuned on
smaller, task-specific datasets. These models leverage elabo-
rated pre-training tasks to obtain universal code representation
suitable for multiple programming languages. This makes them
versatile for various downstream software engineering tasks, in-
cluding automatic code summarization. Similarly, these models
borrow key concepts from pre-trained language models in the
NLP field, with a primary focus on designing innovative pre-
training tasks that accommodate the unique characteristics of
code (Niu, Li, Luo, et al. 2022).

Although deep learning based automatic code summariza-
tion approaches have achieved impressive results, we discover
that existing code summarization models are still facing diffi-
culties in understanding and modelling complex information
contained in code. For instance, Table 1 presents a Java code
snippet (part of the code is truncated for the sake of brevity)
and the corresponding summary description in the Funcom
dataset (LeClair, Jiang, and McMillan 2019), where informa-
tion of the abbreviated formal parameter ‘u’ is reflected in the
summary. Since Java is a strongly typed language, the type
‘URL of the formal parameter in this example may aid models
in generating an accurate summary to some extent. However,
basic data types like ‘int’ and ‘char’ in other code snippets can
offer limited information, making it challenging for these mod-
els. This necessitates the conversion of abbreviations nested
in source code, particularly in identifiers, into corresponding

full terms, which is the goal of the code abbreviation expansion
task. Code abbreviation expansion is able to enhance both the
understandability of source code and the accuracy of natural
language analysis techniques (Newman et al. 2019). Ideally,
the uncertainty of abbreviations' semantic information can be
eliminated by means of code abbreviation expansion, which not
only helps code summarization models better understand codes
but enables them to focus on critical identifiers themselves
rather than their types, fostering better text alignment between
programming and natural language. Exploratory experiments
suggest that an increase in code abbreviations deteriorates the
performance of a code summarization model. Therefore, this
article's primary objective is to investigate whether code abbre-
viation expansion is capable of improving the performance of
code summarization models.

Moreover, the out-of-vocabulary (OOV) issue is another chal-
lenge in automatic code summarization (Sharma, Chen, and
Fard 2022; Cheng et al. 2022). This problem usually arises
when the model encounters identifiers that it has not seen
during training, therefore, they are not included in its vocab-
ulary. To mitigate this issue, current code summarization ap-
proaches split code and summary sequences into individual
words using predefined split functions based on the CamelCase
and snake_case naming conventions (LeClair, Jiang, and
McMillan 2019; Hu et al. 2020; Ahmad et al. 2020). For exam-
ple, if the ‘imgname’ identifier included in the code snippet
appears infrequently across the dataset, it may not be included
in the model's vocabulary. In such cases, during both model
training and inference stages, the identifier would be replaced
by a special symbol (usually denoted as <unk>), representing
an unknown word. This replacement leads to the loss of crit-
ical information because the model cannot learn the seman-
tic meaning of it. However, even if the identifier is frequent
enough to be included in the vocabulary, it can still be chal-
lenging for code summarization models to understand its
actual meaning and generate an accurate summary. This is be-
cause the traditional naming convention-based split functions
cannot split ‘imgname’ into the more meaningful tokens ‘img’
and ‘name’. As a result, the model might struggle to generate
the corresponding summary ‘image’.

Although subword segmentation methods, initially developed
for NMT, have effectively addressed the OOV problem and have

TABLE1 | A code snippet containing abbreviations and identifiers that does not comply with naming conventions.

Function ID 36110318
public void load(URL wu){
FileCacheSeekableStream s = new FileCacheSeekableStream(
u.openStream()) ;
Code load(s);
imgname = u.toString();
}
Summary Loads the image froma URL .
2 0f 20 Expert Systems, 2025

85U8017 SUOLULLIOD @A 18810 3|cedl dde 8Ly Aq peusenob e sajole YO ‘85N JO S9N 10j ARIq1T8UIIUO AB[IM UO (SUOTHPUOO-PU.-SWLBI W00 A8 1M ARe.d]]Bu[UO//:SANY) SUORIPUOD pUe SWie | 8U18eS *[520z/0T/c0] Uo AriqiTauliuo A&(IM ‘Yo L B 19S JO uNBuD 1e3 Aq GEBET ASXS/TTTT'OT/I0P/LI00" A3 (1M AsRIq U1 |UO//SdNY WO1) pepeolumoq ‘Z ‘SZ0Z ‘Y6089 T

been widely adopted in pre-trained language models, these
methods have yet to be considered in automatic code summa-
rization approaches. Existing pre-trained code models have di-
rectly utilised subword algorithms from referenced pre-trained
language models, without making necessary adjustments to
accommodate the unique characteristics of code (Niu, Li, Luo,
et al. 2022). As a result, their usefulness in addressing the afore-
mentioned challenges is limited. Consequently, the second aim
of this article is to explore how to effectively employ subword
segmentation algorithms to tokenize words that traditional
functions fail to split, and to validate their effectiveness in code
summarization models. The main contributions of our work
include:

« We propose the use of code abbreviation expansion to
weaken the negative impact of abbreviations on program
understanding and strengthen the language alignment
ability of code summarization models. A series of context-
based heuristic algorithms are adopted to expand abbrevi-
ations nested in code snippets of Java code summarization
datasets.

+ We introduce the unigram subword segmentation
algorithm to expose more semantic information and fur-
ther enhance the program understanding performance
of code summarization models. Code-specific tokeniz-
ers are developed to tokenize code-summary pairs into
more granular and semantically preserved subword
sequences.

« We present a framework Semantic Enhanced Transformer
for Code Summarization (SETCS) to better leverage the se-
mantic information introduced by above methods. A robust
baseline is designed by fusing embeddings of original and
newly generated subtoken sequences, allowing for effective
capture of critical information.

« To the best of our knowledge, this is the first work that
incorporates code abbreviation expansion and subword
segmentation into the automatic code summarization
task. These methods are model-agnostic and can be easily
integrated into existing automatic code summarization
approaches. Experiments conducted on two widely eval-
uated datasets demonstrate the effectiveness of our pro-
posed methods.

The remainder of this article is structured as follows. Section 2
summarises related work. Section 3 details our proposed meth-
ods. The experimental setup and results are explained and an-
alysed in Sections 4 and 5, respectively. Finally, we conclude
the article and discuss potential avenues for future research in
Section 6.

2 | Related Work
2.1 | Automatic Code Summarization

Automatic code summarization approaches focus on leveraging
code-related information to generate high-quality summary de-
scriptions. Based on the type of information leveraged, existing
research can be divided into two categories.

2.1.1 | Structure-Driven Code Summarization Models

Hu, Li, Xia, Lo, and Jin (2018) first proposed a method of
using the abstract syntax tree (AST) representation of source
code to improve the performance of the code summariza-
tion model. Subsequent works tried to adopt, optimise AST,
or introduce more advanced structural information, such as
combined usage of AST and serialised code (LeClair, Jiang,
and McMillan 2019; Hu et al. 2020; Zhou et al. 2022; Tang
et al. 2022), fine-grained split ASTs (Zhang et al. 2019; Lin
et al. 2021), and utilisation of code property graph (Liu
et al. 2021), multi-view graph (Wu, Zhao, and Zhang 2021),
dataflow graph (Gao et al. 2023), as well as heterogeneous
code graph (Guo et al. 2024).

2.1.2 | Semantic-Driven Code Summarization Models

TL-CodeSum (Hu, Li, Xia, Lo, Lu, et al. 2018) and API2Com
(Shahbazi, Sharma, and Fard 2021) demonstrated the effec-
tiveness of application programming interface (API) infor-
mation for code summarization. DMACOS (Xie et al. 2021)
exploited the deliberation network and adopted method name
prediction as an auxiliary training task to improve the qual-
ity of generated summaries. Li et al. (2024) utilised multi-task
joint learning to incorporate action word prediction into code
summarization models. Both Rencos (Zhang et al. 2020) and
Re2Com (Wei et al. 2021) combined traditional information
retrieval techniques with deep neural networks to exploit the
information contained in retrieved similar code snippets or
corresponding summaries. MLCS (Zhou et al. 2023), a code
summarization method based on meta-learning and code re-
trieval, and MPCos (Xie et al. 2023) designed meta-learning
frameworks for the automatic code summarization task in
different scenarios, among which the key idea is to use simi-
lar code samples to obtain specific summary generators opti-
mised for each target code snippet.

Existing pre-trained code models can also be classified into the
above two categories according to different types of model input
in the pre-training stage. For example, in addition to source
code, GraphCodeBERT (Guo et al. 2021) and SPT-Code (Niu, Li,
Ng, et al. 2022) took control flow graph and AST as additional
code-related structural input respectively, while CodeBERT
(Feng et al. 2020), CodeT5 (Wang et al. 2021) and PLBART
(Ahmad et al. 2021) took code-related semantic information
such as summaries and posts as additional model inputs.

Both code abbreviation expansion and subword segmentation
methods introduced in this article fall into the second category,
as the former method utilises related identifiers to expand abbre-
viations nested in the source code and the latter method assists
in code summarization models by exposing more semantic in-
formation included in the code snippet.

2.2 | Code Abbreviation Expansion
Due to the limitations of abbreviation dictionaries and gen-

eral English dictionaries, more advanced approaches for code
abbreviation expansion focus on contextual information of

3 of 20

85U8017 SUOLULLIOD @A 18810 3|cedl dde 8Ly Aq peusenob e sajole YO ‘85N JO S9N 10j ARIq1T8UIIUO AB[IM UO (SUOTHPUOO-PU.-SWLBI W00 A8 1M ARe.d]]Bu[UO//:SANY) SUORIPUOD pUe SWie | 8U18eS *[520z/0T/c0] Uo AriqiTauliuo A&(IM ‘Yo L B 19S JO uNBuD 1e3 Aq GEBET ASXS/TTTT'OT/I0P/LI00" A3 (1M AsRIq U1 |UO//SdNY WO1) pepeolumoq ‘Z ‘SZ0Z ‘Y6089 T

abbreviations, including comments, methods, classes, and
projects. In addition, most researchers generally adopt cer-
tain predefined matching rules to find potential expansions by
identifying different types of abbreviations. According to our
survey, a series of works made by Jiang et al., (Jiang, Liu, and
Zhang 2019; Jiang et al. 2020; Jiang et al. 2021; Jiang et al. 2022)
in recent years have significantly improved the recall and preci-
sion scores of the code abbreviation expansion task in multiple
open-source applications.

Literature Jiang, Liu, and Zhang (2019) used the semantic re-
lationships between software entities and construct knowledge
graphs for entities, semantically related entities, and their rela-
tionships to obtain full terms of abbreviations in software enti-
ties. Literature Jiang et al. (2020) designed a series of heuristic
methods utilising specific fine-grained context to expand the ab-
breviations in both formal and actual parameters. In response to
the question of whether target abbreviations should be replaced
with the corresponding full names, literature Jiang et al. (2021)
proposed an automatic decision-making tool for abbreviation
expansion. On the basis of Jiang, Liu, and Zhang (2019), litera-
ture Jiang et al. (2022) further proposed an automatic identifier
abbreviation expansion method that leverages the semantic re-
lationship between software entities and migration expansion
within the same application.

To expand abbreviations nested source codes of code summa-
rization datasets, we re-implement and refine three heuristic
algorithms so that abbreviations in identifiers such as param-
eters and variable names can be expanded as much as possible.
These algorithms have been proved to be highly precise when
tested across a range of well-known open-source projects (Jiang
et al. 2020).

2.3 | Subword Segmentation
Byte pair encoding (BPE) (Gage 1994) is a data compression

technology and the original idea is to iteratively replace the
most frequently occurred byte pairs in a sequence with a single,

Data Preprocessing

Abbreviation Expansion & Code Tokenization

unused byte. It was later adopted by Sennrich, Haddow, and
Birch (2016) to solve the OOV problem in the NMT task and
became the dominant method for subword segmentation. By
continuously merging frequently occurred character pairs or se-
quences, BPE can retain the most frequently occurred subwords
in the process of segmenting rare words. It is worth to note that
both CodeBERT and CodeT5 adopt the tokenizer of Roberta (Liu
et al. 2019), which is a pretrained language model that utilises
this algorithm.

Similarly, the WordPiece algorithm (Wu et al. 2016) also starts
from a small vocabulary and continuously learns the merging
rules during the training of a tokenizer. The difference is that
WordPiece prioritises character pairs with lower frequencies
in each part of the vocabulary, and it does not use merging
rules learned in the training stage but looks for the longest
subword from the vocabulary for segmentation in the token-
isation stage.

Contrary to the above two methods, the Unigram algorithm
(Kudo 2018) continuously removes unnecessary words from a
large vocabulary until the desired vocabulary size is reached.
In addition, both BPE and WordPiece segment sentences or
words into unique subword sequences, while Unigram is capa-
ble to produce multiple subword segmentation results based on
probability.

To ensure the selection of the most suitable result from toke-
nized subword candidates, we employ the Unigram algorithm
to train code-specific tokenizers for each code summarization
dataset, aiming to preserve the original semantic information of
the data samples to the greatest extent possible.

3 | Methods

Figure 1 shows the flowchart of our approach. Initially, we ex-
tract code snippets and corresponding summaries from source
code files. Subsequently, these codes are parsed into Abstract
Syntax Trees (ASTs), enabling the extraction of key information

|
: Model Training & Test

Expand | 1-}

! /
|
[

Predicted Summaries

Parse> 1!, L | Embedding—>
:: : | Abbreviations [~ = I Post-process
I
/ Codes ::: I :
s ! e ! Original \
£ i ASTs Tokenize Code Embeddings | [~
&5 : . :
! b [1
|| [[
\a : . : Semantic Enhanced
Source Code '%‘ - —Train—>| {’7} ! } —!Embedding — Transformer
Files e Q </>| |
Subword Tokenizer Tokens Expanded & Tokenized
: Code Embeddings
! Embedding

Summaries -

FIGURE1 | Flowchart of our approach.

4 of 20

Expert Systems, 2025

85U8017 SUOLULLIOD @A 18810 3|cedl dde 8Ly Aq peusenob e sajole YO ‘85N JO S9N 10j ARIq1T8UIIUO AB[IM UO (SUOTHPUOO-PU.-SWLBI W00 A8 1M ARe.d]]Bu[UO//:SANY) SUORIPUOD pUe SWie | 8U18eS *[520z/0T/c0] Uo AriqiTauliuo A&(IM ‘Yo L B 19S JO uNBuD 1e3 Aq GEBET ASXS/TTTT'OT/I0P/LI00" A3 (1M AsRIq U1 |UO//SdNY WO1) pepeolumoq ‘Z ‘SZ0Z ‘Y6089 T

to assist in expanding nested abbreviations within the code.
Following this, we utilise the subword segmentation algorithm
to train a tokenizer based on words in the new corpus, which
comprises sequences of expanded codes and original summa-
ries. Ultimately, tokenized codes and corresponding summaries
are used to train a code summarization model.

The method of fusing the embeddings of both source and mod-
ified code using a Feature Fusion Network (FFN) is not strictly
necessary, as the expanded and tokenized code can be directly
used to train a new code summarization model. However, the
technique of feature fusion is significant and has been employed
in many automatic code summarization approaches. To better
leverage the critical semantic information introduced by meth-
ods proposed in this article, we further present a new encoder-
decoder-based model, namely the SETCS.

3.1 | Context-Based Code Abbreviation Expansion

Figure 2 illustrates the AST corresponding to the code snippet
shown in Table 1, while only part of the key attributes and values
are displayed for brevity. Non-terminal nodes in the AST rep-
resent various attributes, such as parameters, name, and body
of the method declaration. Terminal nodes represent values of
related attributes, such as identifiers and keywords contained
in the code snippet. In the process of parsing source codes into
ASTs, four sets of auxiliary information for each code snippet
are extracted and stored:

1. Method ID, project ID, method name, called methods, and
passed actual parameters.

2. Formal parameters as well as their types, split parameters,
and involved abbreviations.

Method

Declaration

3. Parameters and their types within the method, split pa-
rameters, and involved abbreviations.

4. Variables and their types within the method, split varia-
bles, and involved abbreviation.

The method name, actual parameters passed in the called meth-
ods, and types of formal parameters are used as reference words
for expanding abbreviations involved in split formal parame-
ters. Types of parameters and variables are used as the reference
words to expand abbreviations involved in split parameters and
variables, respectively. The method ID and project ID are used
to locate specific methods in the project when expanding abbre-
viations. For example, in the illustrated AST, the method name
of ‘load’ (extracted name of the method declaration) and formal
parameter's type of ‘URL (extracted reference type of the formal
parameter) will be used to expand the abbreviation ‘u’ in the for-
mal parameter; the variable's type of ‘FileCacheSeekableStream’
(extracted reference type of the local variable declaration) will
be utilised to expand abbreviation of ‘s’ in the variable name.

Note that before identifying abbreviations, corresponding iden-
tifiers are split using a traditional predefined split function,
which splits identifiers based on naming conventions and con-
verts all split words to lowercase. For example, either ‘fileName’
or ‘file_name’ would be split into ‘file’ and ‘name’. In addition,
all abbreviation expansion algorithms utilise the function to
split reference words. Code abbreviation expansion algorithms
are shown as follows:

For longer identifiers that are composed of multiple words, de-
velopers often select the initial characters of each word as an ab-
breviation during programming, and such an abbreviation form
is termed as acronym. For example, the identifier of ‘timePer-
Frame’ may be abbreviated as ‘tpf’. When expanding such kind

parameters name
Formal load
Parameter

Statement
Expression

LocalVariable

Declaration

Method
Invocation

Member
Reference

Reference Reference Variable
name
Type Declarator
name u
URL FileCacheSeckableStream S

FIGURE2 | Illustration of AST.

50f 20

85U8017 SUOLULLIOD @A 18810 3|cedl dde 8Ly Aq peusenob e sajole YO ‘85N JO S9N 10j ARIq1T8UIIUO AB[IM UO (SUOTHPUOO-PU.-SWLBI W00 A8 1M ARe.d]]Bu[UO//:SANY) SUORIPUOD pUe SWie | 8U18eS *[520z/0T/c0] Uo AriqiTauliuo A&(IM ‘Yo L B 19S JO uNBuD 1e3 Aq GEBET ASXS/TTTT'OT/I0P/LI00" A3 (1M AsRIq U1 |UO//SdNY WO1) pepeolumoq ‘Z ‘SZ0Z ‘Y6089 T

of abbreviations, the initial characters of each split word are ex-
tracted (lines 1-4) and used to compare with the abbreviation, if
the abbreviation and combinations of initial characters are the
same, the split word will be considered as the expansion candi-
date of the abbreviation (lines 5-6). It should be noted that the
abbreviation may be equivalent to the initial characters of part
split words, such as the situation of abbreviating ‘setKeystore-
Filename’ as ‘kf’, instead of ‘skf’. To leverage method names to
expand abbreviations present in formal parameters, this case
is also considered during the implementation of the algorithm
(Algorithm 1).

Prefix abbreviations are commonly found in identifier defini-
tion statements, among which ‘String str’ is the most typical
example. The idea of expanding these abbreviations is to find
split words that begin with the abbreviation but are not exactly
equivalent to it in the process of splitting the reference word
and add them to the set of expansion candidates (lines 1-5).
Since basic forms of words are usually short, the shortest one

ALGORITHM1 | Acronym expansion.

is selected as the final expansion candidate of the abbrevia-
tion if multiple candidate expansions are obtained (lines 6-10)
(Algorithm 2).

The term of ‘idx’ is a common dropped letters abbreviation, and
‘index’ is usually its full name. In the process of splitting the ref-
erence word, every split word and each character in the abbre-
viation are compared sequentially, and if a split word (lines 8-9)
contains all the characters of the abbreviation, it is appended to
the list of expansion candidates. Then the next split word and
each character in the abbreviation are compared again until all
split words are traversed. The code logic of lines 11-15 is the
same as lines 6-10 in Algorithm 2, where the shortest word in
the list of expansion candidates is finally selected, while the pur-
pose of which is to avoid introducing extraneous long words that
contain abbreviations. Considering that this algorithm is prone
to generate erroneous expansion results for single-letter abbrevi-
ations, in practice, the length of input abbreviations is limited to
more than 1 (Algorithm 3).

Input: abbreviation, reference word
Output: expansion candidate
1 words « split(reference)
2 initialCharacters ="
3 for each word in words do
4 L initialCharacters = initialCharacters + word[0]

5 if abbreviation equals initialCharacters then
6 L expansion = initialCharacters

7 return expansion

ALGORITHM 2 | Prefix abbreviation expansion.

Input: abbreviation, reference word
Output: expansion candidates

1 words « split(reference)

2 candidates =[]

3 for each word in words do

4 if word starts with and not equals abbreviation then

5 L candidates « candidates U word

6 if len(candidates) > 0 then

7 expansion « candidates[0]

8 for each candidate in candidates do

9 if len(candidate) < len(expansion) then

10 L expansion = candidate

11 return expansion

6 of 20

Expert Systems, 2025

85U8017 SUOLULLIOD @A 18810 3|cedl dde 8Ly Aq peusenob e sajole YO ‘85N JO S9N 10j ARIq1T8UIIUO AB[IM UO (SUOTHPUOO-PU.-SWLBI W00 A8 1M ARe.d]]Bu[UO//:SANY) SUORIPUOD pUe SWie | 8U18eS *[520z/0T/c0] Uo AriqiTauliuo A&(IM ‘Yo L B 19S JO uNBuD 1e3 Aq GEBET ASXS/TTTT'OT/I0P/LI00" A3 (1M AsRIq U1 |UO//SdNY WO1) pepeolumoq ‘Z ‘SZ0Z ‘Y6089 T

ALGORITHM 3 | Dropped-letters abbreviation expansion.

Input: abbreviation, reference word
Output: expansion candidates

1 words « split(reference)

2 candidates = []

3 for each word in words do

4 i—0

5 for j in range(len(word)) do

6 if abbreviation[i] equals word[j] then

7 i—i+1

8 if i equals len(abbreviation) then

9 candidates « candidates U word
10 L break

11 if len(candidates) > O then

12 expansion « candidates[0]

13 for each candidate in candidates do
14 if len(candidate) < len(expansion) then
15 L expansion = candidate

16 return expansion

In summary, context information such as parameter types,
method names, and actual parameters passed into called meth-
ods are utilised as reference words for formal parameter abbre-
viations in a specific method. Subsequently, the most frequent
expansion candidate obtained by the three expansion algorithms
is selected as the final choice. For abbreviations contained in pa-
rameters and variables within the method body, expansion can-
didates obtained by acronym and prefix abbreviation expansion
algorithms are favoured based on their types. While the over-
all approaches of the three abbreviation expansion algorithms
described above are generally consistent with that of Jiang
et al. (2020), the main distinction arises from the original study's
focus on expanding abbreviations in parameters and evaluation
on 9 open-source projects, compared to our need to expand
abbreviations nested in both parameters and variables within
datasets containing approximately 4.7k and 0.5M projects, re-
spectively. Consequently, in our implementation, we encounter
more specific scenarios, such as the discovery of ‘setKeystore-
Filename’ during expanding acronyms, and address these issues
to balance precision and recall as effectively as possible. More
detailed information can be found in our open-source code.

3.2 | Unigram-Based Subword Segmentation

As shown in Figure 1, after obtaining the expanded code
snippets, the new corpus’'s word collection obtained by the
traditional split method is deemed as the initial vocabulary;
then a code-specific tokenizer is trained by leveraging the
unigram subword segmentation algorithm, which based on
the unigram language model; finally, the tokenizer is utilised
to tokenize all code-summary pairs into more fine-grained

subword sequences before they are fed into the code summa-
rization model.

In the context of automatic code summarization, the unigram
subword segmentation algorithm aims to segment code se-
quences and their corresponding summary sequences into
subword units, considering subword-level probabilities. The al-
gorithm follows the steps outlined below:

For a pair of code sequence C and summary sequence S in the
new corpus D, letc = (c,, ... ,c,)ands = (s, ...,s,)correspond
to subword sequences for C and S, respectively. The unigram
language model assumes that each subword appears inde-
pendently, so the occurrence probability of a subwords sequence
¢=(cy, ... ,¢) can be formalised as product of each subword's
occurrence probability:

P)=[]p()
i=1
Wl @
Vi, €V, Zp(cl—) =1

i=1

where V is the pre-determined initial vocabulary. Let T(C) rep-
resent the set of segmentation candidates for C, then the most
likely segmentation sequence can be formulated as:

¢* = argmaxP(c)
c eg T(C) (2)

After that, the expectation maximisation (EM) algorithm is used
to maximise the following marginal likelihood Z, and estimate

7 of 20

85U8017 SUOLULLIOD @A 18810 3|cedl dde 8Ly Aq peusenob e sajole YO ‘85N JO S9N 10j ARIq1T8UIIUO AB[IM UO (SUOTHPUOO-PU.-SWLBI W00 A8 1M ARe.d]]Bu[UO//:SANY) SUORIPUOD pUe SWie | 8U18eS *[520z/0T/c0] Uo AriqiTauliuo A&(IM ‘Yo L B 19S JO uNBuD 1e3 Aq GEBET ASXS/TTTT'OT/I0P/LI00" A3 (1M AsRIq U1 |UO//SdNY WO1) pepeolumoq ‘Z ‘SZ0Z ‘Y6089 T

the occurrence probability of subwords in the form of hidden
variables P(c;).

1D 1D

2= Y 1og(P(c?)) = Y log| > P(e) ®
j=1 Jj=1

ceT(d)

where D = {(CO),SO)>}}31 = {(c(f),s(i)>}]!fi represents the new
code-summary corpus, and | D |is the size of the corpus.

Finally, following steps are iterated over until the desired vocab-
ulary size| V' |is reached:

1. Maintain a fixed vocabulary and use the EM algorithm to
optimise P(c).

2. Calculate the loss #; for each subword c;, where ¢; repre-
sents the change in the loss value of & when ¢; is removed
from the current vocabulary.

3. Sort all subwords according to #; and retain the top n% of
subwords.

Note that high-frequency basic words, including single char-
acters and keywords in the programming language, should al-
ways be kept in the vocabulary to prevent issues of OOV and
over-fine-grained tokenisation, so that critical semantic infor-
mation in initial sequences can be preserved as much as pos-
sible. Finally, a vocabulary that contains subword tokens and
their corresponding occurrence probabilities is obtained, and
the trained tokenizer utilises Equation (2) to generate the most
likely subword sequences c¢* and s* for each pair of C and S based
on the final vocabulary.

In practice, the tokenizer is used to tokenize each word in the
target sequence sequentially. If a word can be represented by a
combination of multiple tokens in the vocabulary, it will be to-
kenized based on (1) whether the tokenized subword is included
in the pre-split word set of code and the sequence in the same
method, which gives subword candidates occurring in some-
where of the same method higher priority; (2) the number of
tokens after tokenisation, which means shorter subword candi-
dates would be a priority. Eventually, the semantically preserved

FIGURE3 | Framework of SETCS.

and/or shortest tokenisation result from the Top-k subword
combination candidates will be selected.

By leveraging the vocabulary that includes characters, com-
mon subwords, and words, rare words in almost all codes and
summaries can be properly tokenized. Most importantly, the
fine-grained and semantically preserved subword representa-
tion exposes more meaningful information, which is expected
to further improve the performance of the code summariza-
tion model.

3.3 | Semantic Enhanced Transformer for Code
Summarization

Figure 3 shows the framework of SETCS. Similar to most code
summarization models, SETCS utilises the encoder-decoder
framework, and adopts the Transformer model as backbone.
Both encoder and decoder of the model are stacked with N iden-
tical layers, and each layer contains several sublayers. Specially,
SETCS takes both original and modified code sequences as input
of the encoder, while only original summary sequences are fed
into the decoder. Besides, the relative positional encoding (Shaw,
Uszkoreit, and Vaswani 2018), instead of Transformer's default
positional encoding mechanism, is used to leverage representa-
tions of relative positions between elements of input sequences
effectively.

Given that the modified code sequence is typically longer than the
original one, after obtaining the optimal subword sequence c* of a
source code sequence C, we insert special <pad> tokens into the
original code sequence, making its length equal to the modified
code sequence. This operation aims to align these two sequences
precisely and avoid improper concatenation in the latter. Using
a predefined embedder class, these sequences are converted into
dense vector representations that capture the lexical information
of both the original and modified code. Following that, embed-
dings of C and c* are generated and concatenated together:

ec = concat(ey, e,) @

where e, and e, represent embedding of original and tokenized
code sequence separately. The word embeddings shown in three

A
Post-process

Decoder
Feed Forward l

[Multi-Head |
Attention Nx
—1

Multi-Head |
Attention |

________________ Feaﬁjre Fu]ilon Masked
coerd Multi-Head
\ Attention
——————————— Concat | R
7__‘ Embedder ‘ Embedder
A A
img _ _nmame .. }| Code Modified Code Summary

8 of 20

Expert Systems, 2025

85U8017 SUOLULLIOD @A 18810 3|cedl dde 8Ly Aq peusenob e sajole YO ‘85N JO S9N 10j ARIq1T8UIIUO AB[IM UO (SUOTHPUOO-PU.-SWLBI W00 A8 1M ARe.d]]Bu[UO//:SANY) SUORIPUOD pUe SWie | 8U18eS *[520z/0T/c0] Uo AriqiTauliuo A&(IM ‘Yo L B 19S JO uNBuD 1e3 Aq GEBET ASXS/TTTT'OT/I0P/LI00" A3 (1M AsRIq U1 |UO//SdNY WO1) pepeolumoq ‘Z ‘SZ0Z ‘Y6089 T

are actually stacked together, similar to the representations
shown in Figure 1. However, we have separated them for better
understanding.

To obtain the code representation 7, that fuses features of both
input sequences, the concatenated code embedding e is sent
into a customised network consisting of a Linear layer and a
ReLU activation followed:

r. = max (0, ecW* + b) 5)

where W* and b° are learnable parameters in the form of matrix
and vector, respectively. After that, r, is fed into the encoder that
is composed of a multi-head self-attention sublayer and a feed-
forward sublayer.

The multi-head self-attention sublayer consists of h heads
to keep the model focused on information at different loca-
tions in the input representation. Each head performs the
self-attention function in parallel and computes an output se-
quence zZ= (zl, ,zx) for the input representation of code,
re=(ry, ...,r.)of x elements:

X

3= Z amn(rmWV"'p;n) (6)

m=1

wherer,, € R%, z; € R%. The involved weight coefficient a,,,, can
be formulated as:

_exp(e) -
" e exp(em)
where e,,,, is computed via a scaled dot-product attention:
r W (r, WE 4 pE)T
e — m (n p mn) (8)

" Ve,

The parameter matrices W<, WX, and W € R%*% are unique
per sublayer and head. The encoding vectors p? and pX e R
include the relative position information between the input ele-
ments r,, and r,,.

Similarly, the outputs of each head are then concatenated to-
gether and fed into the feedforward network sublayer. The only
difference between our customised feature fusion network and
the feedforward layer is that the latter consists of an additional
linear transformation:

FeedForward(Z) = max (0, ZW" + b')W? + b’ 9)

where WY, W2, b', and b? are trainable parameters, and Z rep-
resents output of the multi-head self-attention sublayer. Note
that each sublayer in the model is followed by a residual connec-
tion and layer normalisation, which are omitted from Figure 3
for brevity.

Compared to the encoder, each layer of the decoder contains
an additional masked multi-head self-attention sublayer. This
sublayer is designed to prevent the model from seeing future

information during the prediction of the next word. It achieves
this by applying a mask to the part of the summary sequence
that comes after the current word to be predicted. This ensures
that the model's attention is focused only on the known part of
the sequence during the training phase. After passing through
the multi-head self-attention sublayer, the token representa-
tions are passed through a feedforward sublayer. Each token
representation in the target summary sequence is generated se-
quentially, with each token's generation based on the current
encoding state and the outputs generated for the previous to-
kens. This process allows the model to build up a context for the
current prediction. Finally, the output of the decoder is passed
through a softmax activation function. This function maps the
raw model output to a probability distribution over the possi-
ble next tokens, making it possible to select the most likely next
token for the summary.

4 | Experimental Setup
4.1 | Datasets

Given the indispensable role of project information in code ab-
breviation expansion, we exclude the dataset open-sourced by
Hu, Li, Xia, Lo, and Jin (2018), even though it is relatively small
in scale and has been more widely evaluated, due to its lack of
project information. Instead, we conduct experiments using the
Funcom dataset (LeClair, Jiang, and McMillan 2019) and the
Java portion of the CodeSearchNet corpus (Husain et al. 2020),
henceforth referred to as CSN-Java.

The CSN corpus, sourced from the GitHub open-source re-
pository, comprises code snippets and corresponding sum-
mary descriptions across six programming languages. Among
them, CSN-Java contains approximately 4.7k samples from
nearly 0.5M projects. The Funcom dataset, originated from the
Sourcerer repository open-sourced by Lopes et al. (2010), con-
sists of 2.1 M Java samples from around 29k projects, as prepro-
cessed by LeClair, Jiang, and McMillan (2019).

Despite the preliminary filtering of these two code summariza-
tion datasets, we observed a significant number of low-quality
samples. These could negatively impact or inflate the evalu-
ation results of code summarization models (LeClair, Jiang,
and McMillan 2019; Allamanis 2019). As a result, we remove
samples that meet any of the following conditions during the
extraction of code and summaries from source code files.

1. The code cannot be parsed, or it is not recognised as a
method declaration. This step is necessary for the process
of code abbreviation expansion.

2. The length of the split code or summary sequence is less
than three. Most of these samples contain fragmented in-
formation with very limited meaning.

3. The summary is identified as Self-Admitted Technical
Debt (SATD). These summaries are consisted of meaning-
less contents such as TODO/Fixme.

4. The summary includes auto-generated phrases such
as ‘auto generated’ or ‘generated by’, which is usually

9 of 20

85U8017 SUOLULLIOD @A 18810 3|cedl dde 8Ly Aq peusenob e sajole YO ‘85N JO S9N 10j ARIq1T8UIIUO AB[IM UO (SUOTHPUOO-PU.-SWLBI W00 A8 1M ARe.d]]Bu[UO//:SANY) SUORIPUOD pUe SWie | 8U18eS *[520z/0T/c0] Uo AriqiTauliuo A&(IM ‘Yo L B 19S JO uNBuD 1e3 Aq GEBET ASXS/TTTT'OT/I0P/LI00" A3 (1M AsRIq U1 |UO//SdNY WO1) pepeolumoq ‘Z ‘SZ0Z ‘Y6089 T

associated with auto-generated code that need to be re-
moved according to previous studies (LeClair, Jiang, and
McMillan 2019; Hu et al. 2020; Husain et al. 2020).

5. The contents of the summary are identical, occur more
than 300 times, and do not relate to the actual functionality
of the corresponding code.

6. The code is an exact or near duplicate, which may inflate
model evaluation results (Allamanis 2019).

In the process of dataset filtering, we use the javalang! library
to parse the code, the SATD detection tool? to identify SATDs,
and the Near-Duplicate Code Detector? to detect cloned codes,
respectively. Refer to LeClair, Jiang, and McMillan (2019), both
filtered datasets are partitioned into training, validation, and test

set by project, maintaining a ratio of 90:5:5. The third column in
Table 2 shows the number of code-summary pairs in two filtered
datasets. For clarify, these filtered dataset are referred to as the
original dataset used in subsequent experiments.

4.2 | Exploratory Experiments

To investigate the potential adverse effects of abbreviations in
code on code summarization models, we conduct exploratory
experiments by actively augmented the prevalence of abbrevi-
ations in the code. We then observe the resultant changes in
model performance on both the original and abbreviated data-
sets. This allowed us to assess the impact of abbreviation-rich
code on the effectiveness of code summarization.

TABLE 2 | Statistics of code-summary pairs, parsed identifiers, split identifiers, identified abbreviations, and expanded abbreviations in two

datasets.
Code-
summary Parsed Identified Expanded
Dataset Partition pairs identifiers Split identifiers abbreviations abbreviations
CSN-Java Train 368,224 12,996,895 22,424,406 3,620,121 602,310
Valid 16,846 602,239 1,028,123 187,108 30,129
Test 16,746 595,283 994,543 137,407 26,048
Total 401,816 14,194,417 24,447,072 3,944,636 658,487
Funcom Train 1,371,687 16,896,844 28,956,036 4,368,006 931,854
Valid 86,165 1,077,001 1,850,750 271,223 59,134
Test 81,642 1,022,339 1,753,158 259,266 61,124
Total 1,539,494 18,996,184 32,559,944 4,898,495 1,052,112
BLEU-4 BLEU-4

—— original
—— Abbreviated

15 20 25 30 |35

(a) Seq2Seq

FIGURE4 | Radar map showing performance degradation of models on original and abbreviated CSN-Java datasets.

—— Original
—— Abbreviated

(b) Transformer

10 of 20

Expert Systems, 2025

85U8017 SUOLULLIOD @A 18810 3|cedl dde 8Ly Aq peusenob e sajole YO ‘85N JO S9N 10j ARIq1T8UIIUO AB[IM UO (SUOTHPUOO-PU.-SWLBI W00 A8 1M ARe.d]]Bu[UO//:SANY) SUORIPUOD pUe SWie | 8U18eS *[520z/0T/c0] Uo AriqiTauliuo A&(IM ‘Yo L B 19S JO uNBuD 1e3 Aq GEBET ASXS/TTTT'OT/I0P/LI00" A3 (1M AsRIq U1 |UO//SdNY WO1) pepeolumoq ‘Z ‘SZ0Z ‘Y6089 T

Specifically, we crawl open-source Java projects with over 20
stars from GitHub and extract parameters, variables, and their
corresponding types from the parsed code. If a specific pa-
rameter or variable was identified as an acronym, prefix, or
dropped-letters abbreviation of its corresponding type, the pa-
rameter or variable and it's type will be added to the expansion-
abbreviation library. Ultimately, we obtain a library containing
5956 pairs of expansion and abbreviation. Using this library,
we replace identifiers in the CSN-Java dataset that match the
expansions with corresponding abbreviations. To minimise
the influence of manually introduced abbreviations on the
original semantic meaning of code in the dataset, identical
identifiers in a code snippet will be replaced with the same
predetermined abbreviation. If an identifier can be replaced
with multiple different abbreviations, it will be randomly
replaced with an abbreviation that does not duplicate exist-
ing identifiers in the current code snippet. Subsequently, we
train and test two representative code summarization models,
Seq2Seq and Transformer, on both the original and abbrevi-
ated datasets, and evaluate the models' performance using
common evaluation metrics, namely BLEU-4, METEOR, and
ROUGE-L. Detailed information regarding the models and
evaluation metrics used in the experiments will be provided
in Sections 4.4 and 4.5, respectively.

The changes in evaluation metrics for Seq2Seq and Transformer
models on the original and abbreviated datasets are depicted in
Figure 4. It is evident from the results that increasing the pro-
portion of abbreviations in the dataset negatively impacts the
performance of code summarization models. Both models ex-
hibit a decrease of approximately 1.5, 2, and 3.5 points in the
BLEU-4, METEOR, and ROUGE-L metrics, respectively, when
more abbreviations are introduced into the dataset. These find-
ings suggest the potential for enhancing the performance of code
summarization models by minimising the presence of abbrevia-
tions in the datasets.

4.3 | Preliminary Experiments

Studies in the code abbreviation expansion domain define a
word as an abbreviation if it if not found in an English dictio-
nary (Jiang et al. 2020; Di Martino, Maggio, and Corazza 2012).
We employ the PyEnchant* library to identify abbreviations
from split identifiers. Specifically, words not included in the
‘en_US’ dictionary of the enchant library are considered abbre-
viations. Additionally, single letters, with the exception of ‘a’, are
also treated as abbreviations to complement the identification
results. The last four columns in Table 2 show the number of
parsed identifiers, split identifiers, identified abbreviations, and
expanded abbreviations in two datasets respectively. It can be
found that more than 25% of identifiers contain abbreviations.
After leveraging abbreviation expansion algorithms, about 21%
of the abbreviations in the Funcom data set are expanded, while
this percentage in CSN-Java is approximately 17%. We attribute
the difference to: (1) Compared with the Fucnom dataset, each
code snippet in CSN-Java contains a larger number of abbrevia-
tions on average (about 3-10), indicating that there is substantial
room for exploration in abbreviation expansion for this dataset.
(2) The projects in CSN-Java contain partial methods, which

means that only a fraction of the full method implementation
is present in the dataset. Consequently, the amount of context
information available for expanding abbreviations is inherently
limited.

Given that the precision of abbreviation expansion directly
or indirectly affects the performance of code summarization
models in subsequent experiments, we randomly sampled 1000
expanded abbreviations from two datasets for manual evalua-
tion. Specifically, we found two cases of expansion errors:

1. The term abbreviation is contained within the reference
word. For example, ‘uri’ typically refers to the Uniform
Resource Identifier. However, due to the presence of
‘Security’ in the method name ‘getSecurityProtocol’, the
split ‘security’, as a reference word, was incorrectly inter-
preted by the Dropped Letters expansion algorithm as the
full name of the abbreviated parameter ‘uri’.

2. There are multiple expansion candidates in the reference
words. For example, when expanding the abbreviated
parameter ‘p’ using the Acronym expansion algorithm,
the ‘player’ from the parameter type ‘PlayerPreferences’
was initially identified and determined as its expansion.
However, based on the context of the function, the expan-
sion corresponding to abbreviation ‘p’ should be ‘prefer-
ences’, or more precisely, ‘player preferences'.

Overall, heuristic-based acronym expansion algorithms
cannot achieve perfect precision and are susceptible to the
influence of developer abbreviation habits. The two types
of expansion errors mentioned above are unavoidable.
Fortunately, both cases are rare (one case for each type found
in 1000 manually evaluated samples), and in most times, de-
velopers use abbreviations that include the initials of all words
in parameter or variable types, which are correctly expanded
by the utilised algorithms.

During the training of the tokenizer, we set the expected vo-
cabulary size to 30k, and retain the top 90% subwords at the
end of each iteration. In the process of dataset tokenisation,
the final tokenisation result is selected from the Top-9 candi-
date subword combinations for both datasets. More detailed
information about determining the ‘k’ value will be discussed
in Section 5.3.

To prevent data leakage, we construct the initial vocabulary
using only split code and summary words from the training and
validation sets. When tokenizing words in the test set, we select
the final tokenisation results by referring only to the split words
from the code.

The distributions of shared and unique tokens for original,
abbreviation expanded, and tokenized datasets are shown in
Figure 5. The outermost navy blue, adjacent dodger blue, and
innermost light cyan circles in the venn diagram represent
the unique token distribution of the original, abbreviation ex-
panded, and ULM tokenized datasets, respectively. Numbers in
the middle represent the quantity of shared tokens of datasets
in different status, where we can find that trained tokenizers

11 of 20

85U8017 SUOLULLIOD @A 18810 3|cedl dde 8Ly Aq peusenob e sajole YO ‘85N JO S9N 10j ARIq1T8UIIUO AB[IM UO (SUOTHPUOO-PU.-SWLBI W00 A8 1M ARe.d]]Bu[UO//:SANY) SUORIPUOD pUe SWie | 8U18eS *[520z/0T/c0] Uo AriqiTauliuo A&(IM ‘Yo L B 19S JO uNBuD 1e3 Aq GEBET ASXS/TTTT'OT/I0P/LI00" A3 (1M AsRIq U1 |UO//SdNY WO1) pepeolumoq ‘Z ‘SZ0Z ‘Y6089 T

Original Abbreviation Expanded

137

(a) CSN-Java

Original Abbreviation Expanded

137801

(b) Funcom

FIGURE 5 | Venn diagram showing statistics of shared and unique tokens for original, abbreviation expanded, and tokenized results of two

datasets.

effectively limit vocabulary size of tokenized datasets to less
than 30K; numbers on the leftmost part (coloured in navy blue)
and rightmost part (coloured in light cyan) indicate the quantity
of unique tokens in the original and ULM tokenized datasets
respectively. The unique tokens in both ULM tokenized datasets
are subsequences of longer numerical sequences. In addition,
basic numeric tokens of 0-9 are also included in vocabularies
to guarantee all fresh numbers appearing in the test set can be
properly tokenized via existing numeric tokens. It is worth not-
ing that code abbreviation expansion also reduces the number of
unique tokens in original datasets to some extent. Even in small
quantities, these eliminated tokens are usually relatively import-
ant abbreviated identifiers as mentioned earlier. If we don't ex-
pand these abbreviations, they will be generally identified as the
<unk> symbols due to the low occurrence frequency. However,
they will likely be tokenized into longer character sequences by
trained tokenizers after introducing the subword segmentation
algorithm. Both circumstances may result in the loss of critical
information. Therefore, we believe that it is necessary to per-
form abbreviation expansion before training and adopting the
tokenizer. Results of ablation experiments (Section 5.2) and ex-
ample analysis (Section 5.4) on the Transformer baseline will
demonstrate the effectiveness of abbreviation expansion as well
as its usefulness in combining with the introduced Unigram-
based subword segmentation method.

4.4 | Baseline Models

To verify the effectiveness of our proposed methods, we con-
duct experiments using four representative code summarization
models:

4.4.1 | Seq2Seq

A classical open-sourced NMT framework (Klein et al. 2017),
based on recurrent neural network (RNN) and equipped with
an attention mechanism. Specifically, this baseline uses LSTM

(Hochreiter and Schmidhuber 1997) to generate summa-
ries for given code snippets and is adopted by Rencos (Zhang
et al. 2020), Re2Com (Wei et al. 2021), MLCS (Zhou et al. 2023)
as model backbone.

4.4.2 | Transformer

The vanilla Transformer (Vaswani et al. 2017) model incorpo-
rated with relative positional encoding mechanism. Specifically,
it has been employed by the method of neural code summariza-
tion (NCS) (Ahmad et al. 2020), API2Com (Shahbazi, Sharma,
and Fard 2021), SiT (Wu, Zhao, and Zhang 2021), AST-Trans
(Tang et al. 2022) and the framework of SETCS presented in this
article.

4.4.3 | Networked Control System

NCS (Ahmad et al. 2020): An enhanced Transformer designed
for code summarization that utilises both relative positional en-
coding and copying mechanism (See, Liu, and Manning 2017) for
the first time. The copying mechanism enables the Transformer
to generate words from the vocabulary and copy from the input
source code.

4.4.4 | MLCS

MLCS (Zhou et al. 2023): A state-of-the-art code summarization
framework based on meta-learning and code retrieval. By op-
timising a unique code summarizer for each target code snip-
pet knowledge learned from the retrieved similar examples,
MLCS was able to outperform typical deep-learning models and
retrieval-based neural models.

It is worth noting that since both code summarization data-
sets came from open-source communities, pre-trained code
models typically utilise larger-scale open-source corpora for

12 of 20

Expert Systems, 2025

85U8017 SUOLULLIOD @A 18810 3|cedl dde 8Ly Aq peusenob e sajole YO ‘85N JO S9N 10j ARIq1T8UIIUO AB[IM UO (SUOTHPUOO-PU.-SWLBI W00 A8 1M ARe.d]]Bu[UO//:SANY) SUORIPUOD pUe SWie | 8U18eS *[520z/0T/c0] Uo AriqiTauliuo A&(IM ‘Yo L B 19S JO uNBuD 1e3 Aq GEBET ASXS/TTTT'OT/I0P/LI00" A3 (1M AsRIq U1 |UO//SdNY WO1) pepeolumoq ‘Z ‘SZ0Z ‘Y6089 T

TABLE 3 | Experimental results of SETCS and baselines on two datasets.

CSN-Java Funcom
Model BLEU-4 METEOR ROUGE-L SIDE BLEU-4 METEOR ROUGE-L SIDE
Seq2Seq 16.87 13.37 30.24 83.62 25.79 17.44 38.58 85.71
Transformer 16.65 12.76 28.92 83.55 25.11 17.31 37.60 84.06
MLCS 18.17 12.71 30.66 84.64 27.15 18.34 40.34 86.91
NCS 18.22 13.41 31.72 85.86 27.81 18.82 41.07 87.80
SETCS 18.14 13.96 31.66 85.78 27.81 19.62 41.72 88.28

Note: The best performances are highlighted in bold.

pre-training, these models should have encountered test sam-
ples from the datasets used in our study during the pre-training
stage. Therefore, we excluded these models from the baselines to
avoid threats of pre-training technique and data leakage to the
internal validity of this study.

Referring to prior works (Ahmad et al. 2020; Lin et al. 2021;
Zhou et al. 2023; Wei et al. 2019), we limit the maximum input
and output lengths for all models to 150 and 30, correspond-
ingly. Meanwhile, we set the batch size, vocabulary size, max-
imum training epochs, and beam size to 64, 30K, 30, and 4,
respectively. The best model for code summarization is deter-
mined based on the BLEU scores from the validation set, and
the training process will be halted if there is no enhancement
in the BLEU score over 10 successive epochs. All experiments
are conducted on a Linux server, which is equipped with a
NVIDIA Tesla P40 GPU. The duration of experiments exe-
cuted on the CSN-Java dataset is less than a day, while those
performed on the Funcom dataset typically require approxi-
mately 3 days.

4.5 | Evaluation Metrics

The commonly adopted evaluation metrics, BLEU (Papineni
et al. 2002), METEOR (Banerjee and Lavie 2005), and ROUGE
(Lin 2004), are predicated on the same underlying scenario.
Specifically, for each candidate text, which is the prediction
result generated by the trained model, there exists a corre-
sponding reference text within the dataset, typically a reference
summary authored by the developer. The computation of these
evaluation metrics are fundamentally based on precision and
recall scores:

__gram, (pred, ref) __ gram,(pred, ref)

= R =
" gram,(pred) " gram,, (pred) (10)

where pred, ref, and gram,, refers to the candidate text, reference
text, and the overlapping n-grams, respectively.

The BLEU metric highlights precision, which calculates the geo-
metric average of gram, matches between pred and ref.:

N
BLEU=o¢"- exp(}%] Z loan> 11
n=1

The classical BLEU-4 is calculated by gram,.

The METEOR metric further considers recall, word form, and
synonym matching, which creates unigram alignment between
pred and ref., while longer gram, alignment is prioritised in
this stage.

P,R,
METEOR =06+ ———F——— 12)
(1-a®R,+aP,

where a is the default parameter used for evaluation.

Note that the penalty factor ¢ differs in different evaluation met-
rics. The ROUGE metric calculates gram,, between pred and ref.
The calculation formula can be expressed as:
2P,R
ROUGE = ——=
R,+P

n n

13)

The widely used ROUGE-L is calculated based on the longest
common sequence.

However, the above-mentioned metrics primarily focus on eval-
uating textual similarity between candidate and reference texts,
which may penalise semantically equivalent texts that differ in
wording. To complement these metrics and capture the extent to
which the candidate text aligns with the semantics of the corre-
sponding code snippet, we also adopt the newly proposed SIDE
metric (Mastropaolo et al. 2024), which has been shown to align
well with human assessment. This metric measures the cosine
similarity between embeddings of the candidate text and the cor-
responding code sequence:

SIDE = c08(€,,0q: €c) (14)

where e refers to embedding generated by a fine-tuned MPNet
(Song et al. 2020) model via contrastive learning.

In all subsequent experiments, we employ the BLEU-4,
METEOR, ROUGE-L and SIDE metrics to evaluate the quality
of the summaries generated by the code summarization models,
with higher metric scores representing better quality of gener-
ated summaries. For fair comparison, model predictions as well
as ground-truth references before and after tokenisation are
used for calculation, and the mean score is deemed as the final
result for each evaluation metric.

13 of 20

85U8017 SUOLULLIOD @A 18810 3|cedl dde 8Ly Aq peusenob e sajole YO ‘85N JO S9N 10j ARIq1T8UIIUO AB[IM UO (SUOTHPUOO-PU.-SWLBI W00 A8 1M ARe.d]]Bu[UO//:SANY) SUORIPUOD pUe SWie | 8U18eS *[520z/0T/c0] Uo AriqiTauliuo A&(IM ‘Yo L B 19S JO uNBuD 1e3 Aq GEBET ASXS/TTTT'OT/I0P/LI00" A3 (1M AsRIq U1 |UO//SdNY WO1) pepeolumoq ‘Z ‘SZ0Z ‘Y6089 T

5 | Analysis of Experimental Results

For simplicity, this section adopts CAE and ULM to represent
Code Abbreviation Expansion and ULM-based subword seg-
mentation, respectively. In addition, best results of each metric
in tables are boldfaced.

5.1 | Method Validation

Experimental results of SETCS compared with baselines and
improvements of the baselines after adopting CAE and ULM on
two datasets are shown in Tables 3 and 4 respectively.

As shown in Table 3, compared to the Transformer baseline,
the proposed SETCS, which further harnesses the critical se-
mantic information provided by both CAE and ULM, yields an
improvement of over 2 absolute points across almost all evalu-
ation metrics on both the CSN-Java and Funcom datasets. As
suggested by Roy, Fakhoury, and Arnaoudova (2021), this as-
sures systematic enhancements in summarization quality,
implying that our proposed methods, in conjunction with the
feature fusion approach, could be effectively employed in other
code summarization models that utilise a similar framework to
SETCS. Notably, the NCS model, despite being proposed earlier,
still outperforms the state-of-the-art MLCS and other baseline
models that merely leverage code-related semantic information
on both datasets. Besides, the improvement of SETCS over NCS
is less significant, underscoring the potent potential of the copy-
ing mechanism. Nonetheless, the primary focus of this study is
to validate the effectiveness and applicability of CAE and ULM
on existing code summarization models, rather than proposing
a new state-of-the-art model. More importantly, SETCS could
serve as a robust baseline or backbone for future studies on two
well-curated datasets.

Experimental results in Table 4 demonstrate that the perfor-
mance of all code summarization models improves with the
adoption of our proposed methods. Specifically, the following
conclusions can be drawn:

1. Compared to the smaller CSN-Java dataset, the overall
performance improvement of all baseline models on the
Funcom dataset is more significant. Taking the prevailing
Transformer model as an example, after adopting CAE and
ULM, it can achieve score improvements of 7.3%, 6.9%,
6.7%, and 3.2% in terms of BLEU-4, METEOR, ROUGE-L,
and SIDE, respectively. More significantly, collaboratively
utilising both methods could yield 10.0% performance gain
for Transformer regarding the METEOR metric on the
CSN-Java dataset, which enables the baseline comparable
to SETCS and the improved NCS.

2. In comparison to the other three metrics, the majority of
models exhibit relatively larger absolute score gains with
respect to the ROUGE-L metric on both datasets. We attrib-
ute this phenomenon to the extension of the reference sum-
mary by ULM, coupled with the more granular subword
representation. This enables the model to capture more
semantic information and contributes to the observed sig-
nificant improvement.

3. Overall, the NCS model exhibits the least performance im-
provement following the adoption of the proposed meth-
ods. This outcome is reasonable given that the multiple
identical expansion results introduced by CAE could po-
tentially interfere with the copying mechanism employed
by NCS. Furthermore, both methods, particularly ULM,
might increase the code length. Any content that exceeds
the maximum code length limitation is truncated during
the stages of model training and inference, which could
lead to the loss of crucial information.

TABLE 4 | Improvements of baselines after adopting both CAE and ULM on two datasets.

CSN-Java Funcom
Model BLEU-4 METEOR ROUGE-L SIDE BLEU-4 METEOR ROUGE-L SIDE
Seq2Seq 16.87 13.37 30.24 83.62 25.79 17.44 38.58 85.71
Seq2Seq w/Both 17.40 13.67 30.72 84.57 26.26 18.35 39.54 86.25
(+3.1%) (+2.2%) (+1.6%) (+1.1%) (+1.8%) (+5.2%) (+2.5%) (+0.6%)
Transformer 16.65 12.76 28.92 83.55 25.11 17.31 37.60 84.06
Transformer w/Both 17.60 14.04 30.82 84.83 26.95 18.51 40.12 86.72
(+5.7%) (+10.0%) (+6.6%) (+1.5%) (+7.3%) (+6.9%) (+6.7%) (+3.2%)
MLCS 18.17 12.71 30.66 84.64 27.15 18.34 40.34 86.91
MLCS w/Both 18.45 12.98 31.29 85.35 27.96 18.88 41.29 87.94
(+1.5%) (+2.1%) (+2.1%) (+0.8%) (+3.0%) (+2.9%) (+2.4%) (+1.2%)
NCS 18.22 13.41 31.72 85.86 27.81 18.82 41.07 87.80
NCS w/Both 18.51 13.99 32.25 85.99 28.02 19.10 41.31 88.04
(+1.2%) (+4.3%) (+1.7%) (+0.2%) (+0.7%) (+1.6%) (+0.6%) (+0.3%)

Note: The best performances are highlighted in bold.

14 of 20

Expert Systems, 2025

85U8017 SUOLULLIOD @A 18810 3|cedl dde 8Ly Aq peusenob e sajole YO ‘85N JO S9N 10j ARIq1T8UIIUO AB[IM UO (SUOTHPUOO-PU.-SWLBI W00 A8 1M ARe.d]]Bu[UO//:SANY) SUORIPUOD pUe SWie | 8U18eS *[520z/0T/c0] Uo AriqiTauliuo A&(IM ‘Yo L B 19S JO uNBuD 1e3 Aq GEBET ASXS/TTTT'OT/I0P/LI00" A3 (1M AsRIq U1 |UO//SdNY WO1) pepeolumoq ‘Z ‘SZ0Z ‘Y6089 T

TABLE 5 | Ablation experiment results of transformer and SETCS on two datasets.

CSN-Java Funcom
Model BLEU-4 METEOR ROUGE-L SIDE BLEU-4 METEOR ROUGE-L SIDE
Transformer 16.65 12.76 28.92 83.55 25.11 17.31 37.60 84.06
Transformer w/CAE 17.13 13.38 30.20 84.98 25.47 17.50 38.14 84.31
Transformer w/ ULM 17.42 14.13 30.87 85.36 25.86 17.87 38.79 85.08
Transformer w/Both 17.60 14.04 30.82 84.83 26.95 18.51 40.12 86.72
SETCS w/o CAE 17.84 13.73 31.19 85.89 27.79 19.66 41.68 88.15
SETCS w/o ULM 17.96 14.00 31.61 85.73 27.71 19.64 41.65 88.14
SETCS 18.14 13.96 31.66 85.78 27.81 19.62 41.72 88.28

Note: The best performances are highlighted in bold.

5.2 | Ablation Experiments

Table 5 presents the experimental results of the Transformer and
SETCS models after incorporating CAE, ULM, and both meth-
ods, separately, on two different datasets. The primary distinc-
tion between the two sets of ablation experiments lies in the fact
that only the datasets are modified in the first set of experiments,
whereas in the latter set, modifications are also made to the mod-
els. Besides, performance of the Transformer model can be seen as
the ablation result of SETCS without the feature fusion network.

In ablation experiments results of the first group, it is clearly
that both methods can improve the performance of Transformer
to various degrees, among which ULM plays a more important
role. The combination of two methods could bring further im-
provements in terms of almost all textual similarity-based evalu-
ation metrics, where the minor degradation of the METEOR and
ROUGE-L metrics on CSN-Java can be neglected as difference of
the absolute value is less than 0.1. Notably, on the CSN-Java data-
set, for both Transformer and SETCS, the proposed ULM could
bring about the best improvement for the semantic similarity-
based SIDE metric. In fact, compared with the traditional split
method, code summarization models adopting ULM tokenizers
have better evaluation results on reference summaries whatever
before and after tokenisation. Moreover, the experimental results
of ‘Transformer w/Both’ with 30k vocabulary on the Funcom
dataset are still better than that with a 50k vocabulary. All these
findings further prove that CAE and ULM can effectively intro-
duce and expose more critical semantic information, which plays
a key role in improving model's performance. In addition, when
testing ULM tokenizers in preliminary experiments, we found
that tokenizers trained with a smaller vocabulary will tokenize
most nouns in plural forms, resulting in substantial score gains
in terms of the ROUGE-L metric and decreased performance on
other metrics, which indicates that the granularity of subword
segmentation is not the finer the better. Therefore, when train-
ing a tokenizer for the code summarization model, factors such
as size of the desired vocabulary and length limitations of mod-
el's input and output should be comprehensively considered.

For the second group of ablation experiments’ results, it's in-
teresting that CAE plays a more significant role in improving
performance on the CSN-Java dataset, while ULM plays a more

significant role in the Funcom dataset. Each of the two methods
significantly boosts the performance of all metrics compared to
the Transformer baseline, which indicate the effectiveness of the
feature fusion network equipped by SETCS. However, the collab-
oration of the two methods yield relatively fewer improvements
across most evaluation metrics, which contradicts the earlier
findings. We speculate that the customised network operated in
SETCS is capable of learning more specific transformations but
struggles with learning complex patterns when both methods
are combined. More specifically, the modification of code snip-
pets introduced by CAE is fixed in most circumstances as its al-
gorithms are predefined to expand abbreviations for parameters
or variables in very specific places, while modifications brought
by ULM are randomly distributed in different locations of the
code. In short, this phenomenon can be attributed to the lim-
itations of the feature fusion strategy employed by SETCS, and
more effective approaches are yet to be discovered. Actually, we
have explored many other feature fusion strategies but reaped
relatively fewer improvements compared to method presented
in this article. These tested strategies include concatenating
embeddings of both original and modified code sequences from
another dimension, concatenating embeddings of original and
differences between both code sequences, concatenating both
code representations directly, and utilising different customised
networks when transforming concatenated embeddings to code
representations. Therefore, we leave this challenge for future re-
search. For the purpose of better illustration and broader appli-
cability, experiments in the subsequent sections are conducted
on the Transformer baseline.

5.3 | ULM Tuning and Comparison

In order to determine the appropriate ‘k’ value for the Top-k
subword combination candidates, as discussed in Section 3.2,
we carry out experiments using the ‘Transformer w/ULM’
model on CSN-Java, with ‘k’ values ranging from 1 to 13 and
the span set to 2. Additionally, we conduct comparative exper-
iments to further examine the effects of the introduced ULM
algorithm against basic subword segmentation algorithms.
The choice to perform these experiments on CSN-Java in-
stead of Funcom is primarily driven by considerations of time
efficiency.

15 of 20

85U8017 SUOLULLIOD @A 18810 3|cedl dde 8Ly Aq peusenob e sajole YO ‘85N JO S9N 10j ARIq1T8UIIUO AB[IM UO (SUOTHPUOO-PU.-SWLBI W00 A8 1M ARe.d]]Bu[UO//:SANY) SUORIPUOD pUe SWie | 8U18eS *[520z/0T/c0] Uo AriqiTauliuo A&(IM ‘Yo L B 19S JO uNBuD 1e3 Aq GEBET ASXS/TTTT'OT/I0P/LI00" A3 (1M AsRIq U1 |UO//SdNY WO1) pepeolumoq ‘Z ‘SZ0Z ‘Y6089 T

85.5

85.0 1
84.5 1

SIDE

84.0

31.0
30.5 1
30.0 A

ROUGE-L

29.5 T T T

17.6

BLEU-4

17.4 - ——
17.2

17.0 T T T
145

14.0 A
13.5 4

METEOR

13.0

FIGURE 6 | Experimental results of ‘Transformer w/ULM’ with different k values on CSN-Java.

TABLE 6 | Experimental results of Transformer with different
subword segmentation algorithms on CSN-Java.

Model BLEU-4 METEOR ROUGE-L SIDE
Transformer 16.65 12.76 28.92 83.55
Transformer 17.21 13.21 30.12 84.59
w/BPE_Basic

Transformer 17.15 13.56 30.53 84.62
w/ULM_Basic

Transformer 17.42 14.13 30.87 85.36
w/ULM_Top-9

Note: The best performances are highlighted in bold.

Figure 6 displays the changing curves of four evaluation metrics,
where the trend of all curves goes down, up, and then down.
Table 6 shows experimental results regarding different subword
segmentation algorithms, where results of the Transformer base-
line, Transformer with the basic BPE algorithm, Transformer
with the basic ULM algorithm, and Transformer with the intro-
duced ULM algorithm are listed from up to down. The essential
algorithms operated by both basic and introduced ULM are the
same, but the latter further optimised the training and tokenisa-
tion procedures of code-specific tokenizers to obtain semantic-
preserved results. Besides, the basic WordPiece algorithm is not
involved since it is not open-sourced. The ‘k’ value of the intro-
duced ULM algorithm is set to 9 in all experiments on CSN-Java,
as the overall performance of ‘“Transformer w/ULM’ by select-
ing tokenisation results from Top-9 candidates is proved to be
the best.

Overall, all subword segmentation algorithms could signifi-
cantly improve the performance of Transformer in terms all
metrics, which is expected. Specifically, the difference between

each pair of subword segmentation algorithms is relatively small
in terms of BLEU-4, but differences are obvious when it comes
to other three metrics. The tactic of selecting most semantic-
preserved tokenisation results from Top-k subword combination
candidates introduced in this article is proved to be more effec-
tive compared with the direct adoption of basic ULM algorithm,
which performance is sightly inferior to the introduced ULM
with k set to 1. To sum up, the introduction of subword segmen-
tation algorithms can bring about remarkable improvements for
code summarizations models, and the performance could be
further upgraded if more code-related semantic information can
be preserved.

5.4 | Example Analysis

Table 7 illustrates two examples from Funcom. The last four
rows of the table list generated summaries of the Transformer
model before and after using the proposed method(s).

For the first code snippet, after using CAE to expand the abbre-
viation ‘msg’ nested in the formal parameter ‘msgNumber’ to
‘message’ Transformer accurately generates the corresponding
summaries for the expanded formal parameter ‘message num-
ber’. It is interesting that ULM also enables the model to gener-
ate the correct summary for the abbreviated formal parameter.
We speculate the code summarization model has the potential to
generate the corresponding full names for corresponding abbre-
viations, and semantic information exposed by trained tokeniz-
ers convinces the model that the full name of abbreviation ‘msg’
in the code should be ‘message’. In other words, both methods
effectively enhanced the ability of language alignment for code
summarization models.

When it comes to the second code snippet, although the formal
parameter ‘feedbacktype’ appears multiple times in the code, it

16 of 20

Expert Systems, 2025

85U8017 SUOLULLIOD @A 18810 3|cedl dde 8Ly Aq peusenob e sajole YO ‘85N JO S9N 10j ARIq1T8UIIUO AB[IM UO (SUOTHPUOO-PU.-SWLBI W00 A8 1M ARe.d]]Bu[UO//:SANY) SUORIPUOD pUe SWie | 8U18eS *[520z/0T/c0] Uo AriqiTauliuo A&(IM ‘Yo L B 19S JO uNBuD 1e3 Aq GEBET ASXS/TTTT'OT/I0P/LI00" A3 (1M AsRIq U1 |UO//SdNY WO1) pepeolumoq ‘Z ‘SZ0Z ‘Y6089 T

TABLE 7 | Two illustrative examples from the Funcom dataset.

Function ID 27906163
public SummaryItem getSummary
ItemForMsg(int msgNumber){
Code return (SummaryItem)
summaryItems.get (msgNumber -1);
}
return the summary item info for a
Summary
particular message number .
returns the summary item for the given
Transformer

msg number .

returns the summary item for a given

Transformer w/ CAE
message number .

returns the summary item for the given

Transformer w/ ULM
message number .

returns the summary item for the given

Transformer w/ Both
message number .

44895355

public void setFeedbacktype
(String feedbacktype){

setPropertyString (QTI_RDFS+
" feedbacktype)", feedbacktype));

¥
sets the feedbacktype to the given

string.

sets the name of the qti rdfs property.

sets the <unk>property.

sets the feedback type property.

sets the feedback type .

is still being identified as <unk> due to its overall low frequency
in the dataset, which is reflected in the summary generated by
‘Transformer w/CAE’. Instead of generating <unk> with a rel-
ative small probability, the vanilla Transformer finally chose ‘qti
rdfs’ as the summary, which appears in the code but has nothing
to do with the actual functionality of the code. After tokenizing
‘feedbacktype’ into ‘feedback type’ using the Unigram subword
algorithm, the model correctly understood its meaning and ac-
curately generated a corresponding summary for it.

In summary, the methods proposed in this article improve the
performance of the code summarization model at the semantic
level, and the two methods complement each other. Code ab-
breviation expansion eliminates some rare words. It also avoids
the unigram subword algorithm tokenizing them into overlong
subwords. The subword algorithm can expose more abbreviation
information. If the abbreviation ‘img’ nested in the identifier
‘imgname’ contained in the code snippet of Table 1 is accurately
tokenized and expanded, code summarization models will be
more likely to generate the correct summary ‘image’ for the code.
Therefore, the subword segmentation algorithm also has prac-
tical implications for the study of abbreviation expansion, and
proposing more advanced techniques to combine the copying
mechanism with methods proposed in this article is worthy of
further exploration as well.

6 | Conclusion and Future Work

In this article, we propose two methods to enhance the seman-
tic performance of code summarization models. By expanding

abbreviations within identifiers, we eliminate the uncertainty of
the corresponding semantic information and allow the model to
focus more on the identifiers themselves rather than their types.
Moreover, by leveraging the Unigram subword segmentation al-
gorithm, we train code-specific tokenizers to tokenize code into
more granular subword sequences, which enables the code sum-
marization model to capture more critical information during
training and inference stages. Experimental results from three
typical code summarization models and the presented SETCS
on two datasets demonstrate the effectiveness of our proposed
methods.

Future works include:

1. Incorporate advanced feature fusion techniques into
SETCS to unlock the full potential of our proposed meth-
ods, or employ the framework to verify other automatic
code summarization approaches at either the semantic or
structural level.

2. Explore further how expanding code abbreviations in dif-
ferent proportions and types impacts the performance of
code summarization models, and how the performance is
influenced by different subword segmentation algorithms
with varying vocabulary sizes.

3. Apply the methods proposed in this article to pre-trained
code models and other program understanding or genera-
tion tasks, particularly in conjunction with prompt learn-
ing (Liu et al. 2023) or meta-learning techniques. This
could potentially enhance the efficiency and performance
of these models and tasks.

17 of 20

85U8017 SUOLULLIOD @A 18810 3|cedl dde 8Ly Aq peusenob e sajole YO ‘85N JO S9N 10j ARIq1T8UIIUO AB[IM UO (SUOTHPUOO-PU.-SWLBI W00 A8 1M ARe.d]]Bu[UO//:SANY) SUORIPUOD pUe SWie | 8U18eS *[520z/0T/c0] Uo AriqiTauliuo A&(IM ‘Yo L B 19S JO uNBuD 1e3 Aq GEBET ASXS/TTTT'OT/I0P/LI00" A3 (1M AsRIq U1 |UO//SdNY WO1) pepeolumoq ‘Z ‘SZ0Z ‘Y6089 T

To facilitate future research, we have made datasets used in ex-
periments, as well as the source code of SETCS, publicly avail-
able at https://github.com/Hugo-Liang/SETCS.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

The authors declare that the data supporting the findings of this study
are available within the paper.

Endnotes

Lhttps://github.com/c2nes/javalang.
2https://github.com/Tbabm/SATDDetector-Core.
3https://github.com/microsoft/near-duplicate-code-detector.

“https://pyenchant.github.io/pyenchant.

References

Ahmad, W., S. Chakraborty, B. Ray, and K. W. Chang. 2020. “A
Transformer-Based Approach for Source Code Summarization.”
In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 4998-5007. Stroudsburg, PA: Association
for Computational Linguistics.

Ahmad, W., S. Chakraborty, B. Ray, and K. W. Chang. 2021.
“Unified Pre-training for Program Understanding and Generation.”
In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, 2655-2668. Stroudsburg, PA: Association for
Computational Linguistics.

Allamanis, M. 2019. “The Adverse Effects of Code Duplication in
Machine Learning Models of Code.” In Proceedings of the 2019 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, 143-153. New York, NY:
Association for Computing Machinery.

Banerjee, S., and A. Lavie. 2005. “METEOR: An Automatic Metric for
MT Evaluation With Improved Correlation With Human Judgments.” In
Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation
Measures for Machine Translation and/or Summarization, 65-72.
Stroudsburg, PA: Association for Computational Linguistics.

Cheng, W., P. Hu, S. Wei, and R. Mo. 2022. “Keyword-Guided Abstractive
Code Summarization via Incorporating Structural and Contextual
Information.” Information and Software Technology 150: 106987.

Di Martino, S., V. Maggio, and A. Corazza. 2012. “LINSEN: An Efficient
Approach to Split Identifiers and Expand Abbreviations.” In Proceedings
of the 2012 IEEE International Conference on Software Maintenance,
233-242. Los Alamitos, CA: IEEE Computer Society.

Feng, Z., D. Guo, D. Tang, et al. 2020. “CodeBERT: A Pre-Trained
Model for Programming and Natural Languages.” In Findings of the
Association for Computational Linguistics: EMNLP 2020, 1536-1547.
Stroudsburg, PA: Association for Computational Linguistics.

Gage, P. 1994. “A New Algorithm for Data Compression.” C Users
Journal 12, no. 2: 23-38.

Gao, S., C. Gao, Y. He, et al. 2023. “Code Structure-Guided Transformer
for Source Code Summarization.” ACM Transactions on Software
Engineering and Methodology 32, no. 1: 1-32.

Guo, D., S. Ren, S. Lu, et al. 2021. “GraphCodeBERT: Pre-Training
Code Representations With Data Flow.” In International Conference on
Learning Representations. OpenReview.net.

Guo, J., J. Liu, X. Liu, and L. Li. 2024. “Summarizing Source Code
Through Heterogeneous Feature Fusion and Extraction.” Information
Fusion 103: 102058.

He, H. 2019. “Understanding Source Code Comments at Large-Scale.”
In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering New York, 1217-1219. NY, USA: Association for Computing
Machinery.

Hochreiter, S., and J. Schmidhuber. 1997. “Long Short-Term Memory.”
Neural Computation 9, no. 8: 1735-1780.

Hu, X., G. Li, X. Xia, D. Lo, and Z. Jin. 2018. “Deep Code Comment
Generation.” In Proceedings of the 26th Conference on Program
Comprehension, 200-210. New Yorkm NY: Association for Computing
Machinery.

Hu, X., G. Li, X. Xia, D. Lo, and Z. Jin. 2020. “Deep Code Comment
Generation With Hybrid Lexical and Syntactical Information.”
Empirical Software Engineering 25, no. 3: 2179-2217.

Hu, X., G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin. 2018. “Summarizing
Source Code with Transferred API Knowledge.” In Proceedings of the
27th International Joint Conference on Artificial Intelligence, 2269-2275.
Menlo Park, CA: AAAI Press.

Husain, H., H. H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt.
2020. “CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search.” arXiv:1909.09436.

Iyer, S., I. Konstas, A. Cheung, and L. Zettlemoyer. 2016. “Summarizing
Source Code Using a Neural Attention Model.” In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, 2073—
2083. Stroudsburg, PA: Association for Computational Linguistics.

Jiang, Y., H. Liu, J. Jin, and L. Zhang. 2022. “Automated Expansion of
Abbreviations Based on Semantic Relation and Transfer Expansion.”
IEEE Transactions on Software Engineering 48, no. 2: 519-537.

Jiang, Y., H. Liu, and L. Zhang. 2019. “Semantic Relation Based
Expansion of Abbreviations.” In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 131-141. New York, NY:
Association for Computing Machinery.

Jiang, Y., H. Liu, Y. Zhang, N. Niu, Y. Zhao, and L. Zhang. 2021. “Which
Abbreviations Should be Expanded?” In Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 578-589. New
York, NY: Association for Computing Machinery.

Jiang, Y., H. Liu, J. Zhu, and L. Zhang. 2020. “Automatic and Accurate
Expansion of Abbreviations in Parameters.” IEEE Transactions on
Software Engineering 46, no. 7: 732-747.

Klein, G., Y. Kim, Y. Deng, J. Senellart, and A. Rush. 2017. “OpenNMT:
Open-Source Toolkit for Neural Machine Translation.” In Proceedings of
ACL 2017, System Demonstrations, 67-72. Stroudsburg, PA: Association
for Computational Linguistics.

Kudo, T. 2018. “Subword Regularization: Improving Neural Network
Translation Models With Multiple Subword Candidates.” In Proceedings
of the 56th Annual Meeting of the Association for Computational
Linguistics, 66-75. Stroudsburg, PA: Association for Computational
Linguistics.

LeClair, A., S. Jiang, and C. McMillan. 2019. “A Neural Model for
Generating Natural Language Summaries of Program Subroutines.” In
Proceedings of the 41st International Conference on Software Engineering,
795-806. Piscataway, NJ: IEEE Press.

18 of 20

Expert Systems, 2025

85U8017 SUOLULLIOD @A 18810 3|cedl dde 8Ly Aq peusenob e sajole YO ‘85N JO S9N 10j ARIq1T8UIIUO AB[IM UO (SUOTHPUOO-PU.-SWLBI W00 A8 1M ARe.d]]Bu[UO//:SANY) SUORIPUOD pUe SWie | 8U18eS *[520z/0T/c0] Uo AriqiTauliuo A&(IM ‘Yo L B 19S JO uNBuD 1e3 Aq GEBET ASXS/TTTT'OT/I0P/LI00" A3 (1M AsRIq U1 |UO//SdNY WO1) pepeolumoq ‘Z ‘SZ0Z ‘Y6089 T

https://github.com/Hugo-Liang/SETCS
https://github.com/c2nes/javalang
https://github.com/Tbabm/SATDDetector-Core
https://github.com/microsoft/near-duplicate-code-detector
https://pyenchant.github.io/pyenchant

Li, M., H. Yu, G. Fan, Z. Zhou, and Z. Huang. 2024. “Enhancing Code
Summarization With Action Word Prediction.” Neurocomputing 563:
126777.

Lin, C., Z. Ouyang, J. Zhuang, J. Chen, H. Li, and R. Wu. 2021.
“Improving Code Summarization with Block-wise Abstract Syntax
Tree Splitting.” In 2021 IEEE/ACM 29th International Conference on
Program Comprehension, 184-195. Los Alamitos, CA: IEEE Computer
Society.

Lin, C. Y. 2004. “ROUGE: A Package for Automatic Evaluation of
Summaries.” In Text Summarization Branches out, 74-81. Stroudsburg,
PA: Association for Computational Linguistics.

Liu, P., W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig. 2023. “Pre-
Train, Prompt, and Predict: A Systematic Survey of Prompting Methods
in Natural Language Processing.” ACM Computing Surveys 55, no. 9:
1-35.

Liu, S., Y. Chen, X. Xie, J. K. Siow, and Y. Liu. 2021. “Retrieval-
Augmented Generation for Code Summarization via Hybrid GNN.” In
International Conference on Learning Representations. OpenReview.net.

Liu, Y., M. Ott, N. Goyal, et al. 2019. “RoBERTa: A Robustly Optimized
BERT Pretraining Approach.” arXiv:1907.11692.

Lopes, C., S. Bajracharya, J. Ossher, and P. Baldi. 2010. “UCI Source
Code Data Sets.”

Mastropaolo, A., M. Ciniselli, M. D. Penta, and G. Bavota. 2024.
“Evaluating Code Summarization Techniques: A New Metric and an
Empirical Characterization.” In In: 2024 IEEE/ACM 46th International
Conference on Software Engineering, 1002-1002. Los Alamitos, CA:
IEEE Computer Society.

Moreno, L., and A. Marcus. 2018. “Automatic Software Summarization:
The State of the Art.” In Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings, 530-531. New York,
NY: Association for Computing Machinery.

Newman, C. D., M. J. Decker, R. S. Alsuhaibani, A. Peruma, D. Kaushik,
and E. Hill. 2019. “An Empirical Study of Abbreviations and Expansions
in Software Artifacts.” In 2019 IEEE International Conference on
Software Maintenance and Evolution, 269-279. New York, NY: IEEE.

Niu, C., C. Li, B. Luo, and V. Ng. 2022. “Deep Learning Meets Software
Engineering: A Survey on Pre-Trained Models of Source Code.”
In Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence International Joint Conferences on Artificial
Intelligence Organization, 5546-5555. Vienna, Austria: IJCAIL

Niu, C., C. Li, V. Ng, J. Ge, L. Huang, and B. Luo. 2022. “SPT-Code:
Sequence-to-Sequence Pre-Training for Learning Source Code
Representations.” In 2022 IEEE/ACM 44th International Conference on
Software Engineering, 1-13. Los Alamitos, CA: IEEE Computer Society.

Papineni, K., S. Roukos, T. Ward, and W. J. Zhu. 2002. “BLEU: A Method
for Automatic Evaluation of Machine Translation.” In Proceedings of
the 40th Annual Meeting on Association for Computational Linguistics,
311-318. Stroudsburg, PA: Association for Computational Linguistics.

Rai, S., R. C. Belwal, and A. Gupta. 2022. “A Review on Source Code
Documentation.” ACM Transactions on Intelligent Systems and
Technology 13, no. 5: 1-44.

Roy, D., S. Fakhoury, and V. Arnaoudova. 2021. “Reassessing Automatic
Evaluation Metrics for Code Summarization Tasks.” In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
1105-1116. New York, NY: Association for Computing Machinery.

See, A., P. J. Liu, and C. D. Manning. 2017. “Get to the Point:
Summarization With Pointer-Generator Networks.” In Proceedings
of the 55th Annual Meeting of the Association for Computational
Linguistics, 1073-1083. Stroudsburg, PA: Association for Computational
Linguistics.

Sennrich, R., B. Haddow, and A. Birch. 2016. “Neural Machine
Translation of Rare Words With Subword Units.” In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics,
1715-1725. Stroudsburg, PA: Association for Computational Linguistics.

Shahbazi, R., R. Sharma, and F. H. Fard. 2021. “API2Com: On the
Improvement of Automatically Generated Code Comments Using API
Documentations.” In 2021 IEEE/ACM 29th International Conference on
Program Comprehension, 411-421. Los Alamitos, CA: IEEE Computer
Society.

Sharma, R., F. Chen, and F. Fard. 2022. “LAMNER: Code Comment
Generation Using Character Language Model and Named Entity
Recognition.” In Proceedings of the 30th IEEE/ACM International
Conference on Program Comprehension, 48-59. New York, NY:
Association for Computing Machinery.

Shaw, P., J. Uszkoreit, and A. Vaswani. 2018. “Self-Attention With
Relative Position Representations.” In Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 464-468. Stroudsburg, PA:
Association for Computational Linguistics.

Song, K., X. Tan, T. Qin, J. Lu, and T. Y. Liu. 2020. “MPNet: Masked and
Permuted Pre-Training for Language Understanding.” In Proceedings
of the 34th International Conference on Neural Information Processing
Systems. Red Hook, NY: Curran Associates Inc.

Storey, M. A. 2005. “Theories, Methods and Tools in Program
Comprehension: Past, Present and Future.” In 13th International
Workshop on Program Comprehension, 181-191. Los Alamitos, CA:
IEEE Computer Society.

Tang, Z., X. Shen, C. Li, et al. 2022. “AST-Trans: Code Summarization
With Efficient Tree-Structured Attention.” In Proceedings of the 44th
International Conference on Software Engineering, 150-162. New York,
NY: Association for Computing Machinery.

Vaswani, A., N. Shazeer, N. Parmar, et al. 2017. “Attention Is all You
Need.” In Proceedings of the 3Ist International Conference on Neural
Information Processing Systems, 6000-6010. Red Hook, NY: Curran
Associates Inc.

Wang, Y., W. Wang, S. Joty, and S. C. H. Hoi. 2021. “CodeTS5:
Identifier-Aware Unified Pre-Trained Encoder-Decoder Models for
Code Understanding and Generation.” In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, 8696.
Stroudsburg, PA: Association for Computational Linguistics.

‘Wei, B., G. Li, X. Xia, Z. Fu, and Z. Jin. 2019. Code Generation as a Dual
Task of Code Summarization. Red Hook, NY: Curran Associates Inc.

Wei, B., Y. Li, G. Li, X. Xia, and Z. Jin. 2021. “Retrieve and Refine:
Exemplar-Based Neural Comment Generation.” In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering, 349-360. New York, NY: Association for Computing
Machinery.

Wu, H., H. Zhao, and M. Zhang. 2021. “Code Summarization with
Structure-Induced Transformer.” In Findings of the Association for
Computational Linguistics: ACL-IJCNLP 2021, 1078-1090. Stroudsburg,
PA: Association for Computational Linguistics.

Wu, Y., M. Schuster, Z. Chen, et al. 2016. “Google's Neural Machine
Translation System: Bridging the Gap Between Human and Machine
Translation.” arXiv:1609.08144v2.

Xie, R., T. Hu, W. Ye, and S. Zhang. 2023. Low-Resources Project-
Specific Code Summarization. In: Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering. New
York, NY: Association for Computing Machinery.

Xie, R., W. Ye, J. Sun, and S. Zhang. 2021. “Exploiting Method Names
to Improve Code Summarization: A Deliberation Multi-Task Learning
Approach.” In 2021 IEEE/ACM 29th International Conference on
Program Comprehension, 138-148. Los Alamitos, CA: IEEE Computer
Society.

19 of 20

85U8017 SUOLULLIOD @A 18810 3|cedl dde 8Ly Aq peusenob e sajole YO ‘85N JO S9N 10j ARIq1T8UIIUO AB[IM UO (SUOTHPUOO-PU.-SWLBI W00 A8 1M ARe.d]]Bu[UO//:SANY) SUORIPUOD pUe SWie | 8U18eS *[520z/0T/c0] Uo AriqiTauliuo A&(IM ‘Yo L B 19S JO uNBuD 1e3 Aq GEBET ASXS/TTTT'OT/I0P/LI00" A3 (1M AsRIq U1 |UO//SdNY WO1) pepeolumoq ‘Z ‘SZ0Z ‘Y6089 T

Zhang, J., X. Wang, H. Zhang, H. Sun, and X. Liu. 2020. Retrieval-
Based Neural Source Code Summarization, 1385-1397. New York, NY:
Association for Computing Machinery.

Zhang, J., X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu. 2019. “A
Novel Neural Source Code Representation Based on Abstract Syntax
Tree.” In Proceedings of the 41st International Conference on Software
Engineering, 783-794. Piscataway, NJ: IEEE Press.

Zhou,Z.,H.Yu,G.Fan,Z.Huang,and K. Yang. 2023. “Towards Retrieval-
Based Neural Code Summarization: A Meta-Learning Approach.” IEEE
Transactions on Software Engineering 49, no. 4: 3008-3031.

Zhou, Z., H. Yu, G. Fan, Z. Huang, and X. Yang. 2022. “Summarizing
Source Code With Hierarchical Code Representation.” Information and
Software Technology 143: 106761.

20 of 20

Expert Systems, 2025

85U8017 SUOLULLIOD @A 18810 3|cedl dde 8Ly Aq peusenob e sajole YO ‘85N JO S9N 10j ARIq1T8UIIUO AB[IM UO (SUOTHPUOO-PU.-SWLBI W00 A8 1M ARe.d]]Bu[UO//:SANY) SUORIPUOD pUe SWie | 8U18eS *[520z/0T/c0] Uo AriqiTauliuo A&(IM ‘Yo L B 19S JO uNBuD 1e3 Aq GEBET ASXS/TTTT'OT/I0P/LI00" A3 (1M AsRIq U1 |UO//SdNY WO1) pepeolumoq ‘Z ‘SZ0Z ‘Y6089 T

	Automatic Code Summarization Using Abbreviation Expansion and Subword Segmentation
	ABSTRACT
	1   |   Introduction
	2   |   Related Work
	2.1   |   Automatic Code Summarization
	2.1.1   |   Structure-Driven Code Summarization Models
	2.1.2   |   Semantic-Driven Code Summarization Models

	2.2   |   Code Abbreviation Expansion
	2.3   |   Subword Segmentation

	3   |   Methods
	3.1   |   Context-Based Code Abbreviation Expansion
	3.2   |   Unigram-Based Subword Segmentation
	3.3   |   Semantic Enhanced Transformer for Code Summarization

	4   |   Experimental Setup
	4.1   |   Datasets
	4.2   |   Exploratory Experiments
	4.3   |   Preliminary Experiments
	4.4   |   Baseline Models
	4.4.1   |   Seq2Seq
	4.4.2   |   Transformer
	4.4.3   |   Networked Control System
	4.4.4   |   MLCS

	4.5   |   Evaluation Metrics

	5   |   Analysis of Experimental Results
	5.1   |   Method Validation
	5.2   |   Ablation Experiments
	5.3   |   ULM Tuning and Comparison
	5.4   |   Example Analysis

	6   |   Conclusion and Future Work
	Conflicts of Interest
	Data Availability Statement
	Endnotes
	References

