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ABSTRACT
Automatic code summarization refers to generating concise natural language descriptions for code snippets. It is vital for im-
proving the efficiency of program understanding among software developers and maintainers. Despite the impressive strides 
made by deep learning-based methods, limitations still exist in their ability to understand and model semantic information 
due to the unique nature of programming languages. We propose two methods to boost code summarization models: context-
based abbreviation expansion and unigram language model-based subword segmentation. We use heuristics to expand abbrevi-
ations within identifiers, reducing semantic ambiguity and improving the language alignment of code summarization models. 
Furthermore, we leverage subword segmentation to tokenize code into finer subword sequences, providing more semantic infor-
mation during training and inference, thereby enhancing program understanding. These methods are model-agnostic and can 
be readily integrated into existing automatic code summarization approaches. Experiments conducted on two widely used Java 
code summarization datasets demonstrated the effectiveness of our approach. Specifically, by fusing original and modified code 
representations into the Transformer model, our Semantic Enhanced Transformer for Code Summarizsation (SETCS) serves as 
a robust semantic-level baseline. By simply modifying the datasets, our methods achieved performance improvements of up to 
7.3%, 10.0%, 6.7%, and 3.2% for representative code summarization models in terms of BLEU-4, METEOR, ROUGE-L and SIDE, 
respectively.

1   |   Introduction

Program understanding is essential to software development 
and maintenance (Storey  2005). The presence of high-quality 
natural language descriptions for code can significantly enhance 
the readability and understandability of the program, thereby 
boosting the work efficiency of software development and main-
tenance personnel (He  2019). Automatic code summarization, 

as a task of automatically generating corresponding functional 
descriptions for code, is currently a hot research topic in the 
field of program understanding (Moreno and Marcus 2018; Rai, 
Belwal, and Gupta 2022).

As advances in deep learning techniques and the enrichment of 
open-sourced code summarization corpora, data-driven deep 
learning methods have significantly improved the efficiency 
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and quality of auto-generated summaries. Iyer et al. (2016) pi-
oneered the integration of deep neural networks in automatic 
code summarization, employing the sequence-to-sequence 
(Seq2Seq) model within the end-to-end NMT framework to 
generate code summaries. Since the Transformer (Vaswani 
et  al.  2017) emerged in recent years has advantages in rep-
resenting long sequences, researchers have continuously pro-
posed advanced code summarization frameworks based on 
this prevailing model. Most deep learning based automatic 
code summarization approaches draw inspiration from NMT 
solutions in NLP, and concentrate on exploring the relation-
ship between code-related semantic as well as structural in-
formation and natural language descriptions (Rai, Belwal, 
and Gupta 2022).

Pre-trained code models, which build upon the architectures 
of existing deep learning models, are initially trained on exten-
sive multi-language datasets and subsequently fine-tuned on 
smaller, task-specific datasets. These models leverage elabo-
rated pre-training tasks to obtain universal code representation 
suitable for multiple programming languages. This makes them 
versatile for various downstream software engineering tasks, in-
cluding automatic code summarization. Similarly, these models 
borrow key concepts from pre-trained language models in the 
NLP field, with a primary focus on designing innovative pre-
training tasks that accommodate the unique characteristics of 
code (Niu, Li, Luo, et al. 2022).

Although deep learning based automatic code summariza-
tion approaches have achieved impressive results, we discover 
that existing code summarization models are still facing diffi-
culties in understanding and modelling complex information 
contained in code. For instance, Table 1 presents a Java code 
snippet (part of the code is truncated for the sake of brevity) 
and the corresponding summary description in the Funcom 
dataset (LeClair, Jiang, and McMillan  2019), where informa-
tion of the abbreviated formal parameter ‘u’ is reflected in the 
summary. Since Java is a strongly typed language, the type 
‘URL’ of the formal parameter in this example may aid models 
in generating an accurate summary to some extent. However, 
basic data types like ‘int’ and ‘char’ in other code snippets can 
offer limited information, making it challenging for these mod-
els. This necessitates the conversion of abbreviations nested 
in source code, particularly in identifiers, into corresponding 

full terms, which is the goal of the code abbreviation expansion 
task. Code abbreviation expansion is able to enhance both the 
understandability of source code and the accuracy of natural 
language analysis techniques (Newman et  al.  2019). Ideally, 
the uncertainty of abbreviations' semantic information can be 
eliminated by means of code abbreviation expansion, which not 
only helps code summarization models better understand codes 
but enables them to focus on critical identifiers themselves 
rather than their types, fostering better text alignment between 
programming and natural language. Exploratory experiments 
suggest that an increase in code abbreviations deteriorates the 
performance of a code summarization model. Therefore, this 
article's primary objective is to investigate whether code abbre-
viation expansion is capable of improving the performance of 
code summarization models.

Moreover, the out-of-vocabulary (OOV) issue is another chal-
lenge in automatic code summarization (Sharma, Chen, and 
Fard  2022; Cheng et  al.  2022). This problem usually arises 
when the model encounters identifiers that it has not seen 
during training, therefore, they are not included in its vocab-
ulary. To mitigate this issue, current code summarization ap-
proaches split code and summary sequences into individual 
words using predefined split functions based on the CamelCase 
and snake_case naming conventions (LeClair, Jiang, and 
McMillan 2019; Hu et al. 2020; Ahmad et al. 2020). For exam-
ple, if the ‘imgname’ identifier included in the code snippet 
appears infrequently across the dataset, it may not be included 
in the model's vocabulary. In such cases, during both model 
training and inference stages, the identifier would be replaced 
by a special symbol (usually denoted as <unk>), representing 
an unknown word. This replacement leads to the loss of crit-
ical information because the model cannot learn the seman-
tic meaning of it. However, even if the identifier is frequent 
enough to be included in the vocabulary, it can still be chal-
lenging for code summarization models to understand its 
actual meaning and generate an accurate summary. This is be-
cause the traditional naming convention-based split functions 
cannot split ‘imgname’ into the more meaningful tokens ‘img’ 
and ‘name’. As a result, the model might struggle to generate 
the corresponding summary ‘image’.

Although subword segmentation methods, initially developed 
for NMT, have effectively addressed the OOV problem and have 

TABLE 1    |    A code snippet containing abbreviations and identifiers that does not comply with naming conventions.
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been widely adopted in pre-trained language models, these 
methods have yet to be considered in automatic code summa-
rization approaches. Existing pre-trained code models have di-
rectly utilised subword algorithms from referenced pre-trained 
language models, without making necessary adjustments to 
accommodate the unique characteristics of code (Niu, Li, Luo, 
et al. 2022). As a result, their usefulness in addressing the afore-
mentioned challenges is limited. Consequently, the second aim 
of this article is to explore how to effectively employ subword 
segmentation algorithms to tokenize words that traditional 
functions fail to split, and to validate their effectiveness in code 
summarization models. The main contributions of our work 
include:

•	 We propose the use of code abbreviation expansion to 
weaken the negative impact of abbreviations on program 
understanding and strengthen the language alignment 
ability of code summarization models. A series of context-
based heuristic algorithms are adopted to expand abbrevi-
ations nested in code snippets of Java code summarization 
datasets.

•	 We introduce the unigram subword segmentation 
algorithm to expose more semantic information and fur-
ther enhance the program understanding performance 
of code summarization models. Code-specific tokeniz-
ers are developed to tokenize code-summary pairs into 
more granular and semantically preserved subword 
sequences.

•	 We present a framework Semantic Enhanced Transformer 
for Code Summarization (SETCS) to better leverage the se-
mantic information introduced by above methods. A robust 
baseline is designed by fusing embeddings of original and 
newly generated subtoken sequences, allowing for effective 
capture of critical information.

•	 To the best of our knowledge, this is the first work that 
incorporates code abbreviation expansion and subword 
segmentation into the automatic code summarization 
task. These methods are model-agnostic and can be easily 
integrated into existing automatic code summarization 
approaches. Experiments conducted on two widely eval-
uated datasets demonstrate the effectiveness of our pro-
posed methods.

The remainder of this article is structured as follows. Section 2 
summarises related work. Section 3 details our proposed meth-
ods. The experimental setup and results are explained and an-
alysed in Sections  4 and 5, respectively. Finally, we conclude 
the article and discuss potential avenues for future research in 
Section 6.

2   |   Related Work

2.1   |   Automatic Code Summarization

Automatic code summarization approaches focus on leveraging 
code-related information to generate high-quality summary de-
scriptions. Based on the type of information leveraged, existing 
research can be divided into two categories.

2.1.1   |   Structure-Driven Code Summarization Models

Hu, Li, Xia, Lo, and Jin  (2018) first proposed a method of 
using the abstract syntax tree (AST) representation of source 
code to improve the performance of the code summariza-
tion model. Subsequent works tried to adopt, optimise AST, 
or introduce more advanced structural information, such as 
combined usage of AST and serialised code (LeClair, Jiang, 
and McMillan  2019; Hu et  al.  2020; Zhou et  al.  2022; Tang 
et  al.  2022), fine-grained split ASTs (Zhang et  al.  2019; Lin 
et  al.  2021), and utilisation of code property graph (Liu 
et  al.  2021), multi-view graph (Wu, Zhao, and Zhang  2021), 
dataflow graph (Gao et  al.  2023), as well as heterogeneous 
code graph (Guo et al. 2024).

2.1.2   |   Semantic-Driven Code Summarization Models

TL-CodeSum (Hu, Li, Xia, Lo, Lu, et al. 2018) and API2Com 
(Shahbazi, Sharma, and Fard  2021) demonstrated the effec-
tiveness of application programming interface (API) infor-
mation for code summarization. DMACOS (Xie et  al.  2021) 
exploited the deliberation network and adopted method name 
prediction as an auxiliary training task to improve the qual-
ity of generated summaries. Li et al. (2024) utilised multi-task 
joint learning to incorporate action word prediction into code 
summarization models. Both Rencos (Zhang et al. 2020) and 
Re2Com (Wei et  al.  2021) combined traditional information 
retrieval techniques with deep neural networks to exploit the 
information contained in retrieved similar code snippets or 
corresponding summaries. MLCS (Zhou et  al.  2023), a code 
summarization method based on meta-learning and code re-
trieval, and MPCos (Xie et  al.  2023) designed meta-learning 
frameworks for the automatic code summarization task in 
different scenarios, among which the key idea is to use simi-
lar code samples to obtain specific summary generators opti-
mised for each target code snippet.

Existing pre-trained code models can also be classified into the 
above two categories according to different types of model input 
in the pre-training stage. For example, in addition to source 
code, GraphCodeBERT (Guo et al. 2021) and SPT-Code (Niu, Li, 
Ng, et al. 2022) took control flow graph and AST as additional 
code-related structural input respectively, while CodeBERT 
(Feng et  al.  2020), CodeT5 (Wang et  al.  2021) and PLBART 
(Ahmad et  al.  2021) took code-related semantic information 
such as summaries and posts as additional model inputs.

Both code abbreviation expansion and subword segmentation 
methods introduced in this article fall into the second category, 
as the former method utilises related identifiers to expand abbre-
viations nested in the source code and the latter method assists 
in code summarization models by exposing more semantic in-
formation included in the code snippet.

2.2   |   Code Abbreviation Expansion

Due to the limitations of abbreviation dictionaries and gen-
eral English dictionaries, more advanced approaches for code 
abbreviation expansion focus on contextual information of 
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abbreviations, including comments, methods, classes, and 
projects. In addition, most researchers generally adopt cer-
tain predefined matching rules to find potential expansions by 
identifying different types of abbreviations. According to our 
survey, a series of works made by Jiang et al., (Jiang, Liu, and 
Zhang 2019; Jiang et al. 2020; Jiang et al. 2021; Jiang et al. 2022) 
in recent years have significantly improved the recall and preci-
sion scores of the code abbreviation expansion task in multiple 
open-source applications.

Literature Jiang, Liu, and Zhang  (2019) used the semantic re-
lationships between software entities and construct knowledge 
graphs for entities, semantically related entities, and their rela-
tionships to obtain full terms of abbreviations in software enti-
ties. Literature Jiang et al. (2020) designed a series of heuristic 
methods utilising specific fine-grained context to expand the ab-
breviations in both formal and actual parameters. In response to 
the question of whether target abbreviations should be replaced 
with the corresponding full names, literature Jiang et al. (2021) 
proposed an automatic decision-making tool for abbreviation 
expansion. On the basis of Jiang, Liu, and Zhang (2019), litera-
ture Jiang et al. (2022) further proposed an automatic identifier 
abbreviation expansion method that leverages the semantic re-
lationship between software entities and migration expansion 
within the same application.

To expand abbreviations nested source codes of code summa-
rization datasets, we re-implement and refine three heuristic 
algorithms so that abbreviations in identifiers such as param-
eters and variable names can be expanded as much as possible. 
These algorithms have been proved to be highly precise when 
tested across a range of well-known open-source projects (Jiang 
et al. 2020).

2.3   |   Subword Segmentation

Byte pair encoding (BPE) (Gage  1994) is a data compression 
technology and the original idea is to iteratively replace the 
most frequently occurred byte pairs in a sequence with a single, 

unused byte. It was later adopted by Sennrich, Haddow, and 
Birch  (2016) to solve the OOV problem in the NMT task and 
became the dominant method for subword segmentation. By 
continuously merging frequently occurred character pairs or se-
quences, BPE can retain the most frequently occurred subwords 
in the process of segmenting rare words. It is worth to note that 
both CodeBERT and CodeT5 adopt the tokenizer of Roberta (Liu 
et al. 2019), which is a pretrained language model that utilises 
this algorithm.

Similarly, the WordPiece algorithm (Wu et al. 2016) also starts 
from a small vocabulary and continuously learns the merging 
rules during the training of a tokenizer. The difference is that 
WordPiece prioritises character pairs with lower frequencies 
in each part of the vocabulary, and it does not use merging 
rules learned in the training stage but looks for the longest 
subword from the vocabulary for segmentation in the token-
isation stage.

Contrary to the above two methods, the Unigram algorithm 
(Kudo  2018) continuously removes unnecessary words from a 
large vocabulary until the desired vocabulary size is reached. 
In addition, both BPE and WordPiece segment sentences or 
words into unique subword sequences, while Unigram is capa-
ble to produce multiple subword segmentation results based on 
probability.

To ensure the selection of the most suitable result from toke-
nized subword candidates, we employ the Unigram algorithm 
to train code-specific tokenizers for each code summarization 
dataset, aiming to preserve the original semantic information of 
the data samples to the greatest extent possible.

3   |   Methods

Figure 1 shows the flowchart of our approach. Initially, we ex-
tract code snippets and corresponding summaries from source 
code files. Subsequently, these codes are parsed into Abstract 
Syntax Trees (ASTs), enabling the extraction of key information 

FIGURE 1    |    Flowchart of our approach.
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to assist in expanding nested abbreviations within the code. 
Following this, we utilise the subword segmentation algorithm 
to train a tokenizer based on words in the new corpus, which 
comprises sequences of expanded codes and original summa-
ries. Ultimately, tokenized codes and corresponding summaries 
are used to train a code summarization model.

The method of fusing the embeddings of both source and mod-
ified code using a Feature Fusion Network (FFN) is not strictly 
necessary, as the expanded and tokenized code can be directly 
used to train a new code summarization model. However, the 
technique of feature fusion is significant and has been employed 
in many automatic code summarization approaches. To better 
leverage the critical semantic information introduced by meth-
ods proposed in this article, we further present a new encoder-
decoder-based model, namely the SETCS.

3.1   |   Context-Based Code Abbreviation Expansion

Figure 2 illustrates the AST corresponding to the code snippet 
shown in Table 1, while only part of the key attributes and values 
are displayed for brevity. Non-terminal nodes in the AST rep-
resent various attributes, such as parameters, name, and body 
of the method declaration. Terminal nodes represent values of 
related attributes, such as identifiers and keywords contained 
in the code snippet. In the process of parsing source codes into 
ASTs, four sets of auxiliary information for each code snippet 
are extracted and stored:

1.	 Method ID, project ID, method name, called methods, and 
passed actual parameters.

2.	 Formal parameters as well as their types, split parameters, 
and involved abbreviations.

3.	 Parameters and their types within the method, split pa-
rameters, and involved abbreviations.

4.	 Variables and their types within the method, split varia-
bles, and involved abbreviation.

The method name, actual parameters passed in the called meth-
ods, and types of formal parameters are used as reference words 
for expanding abbreviations involved in split formal parame-
ters. Types of parameters and variables are used as the reference 
words to expand abbreviations involved in split parameters and 
variables, respectively. The method ID and project ID are used 
to locate specific methods in the project when expanding abbre-
viations. For example, in the illustrated AST, the method name 
of ‘load’ (extracted name of the method declaration) and formal 
parameter's type of ‘URL’ (extracted reference type of the formal 
parameter) will be used to expand the abbreviation ‘u’ in the for-
mal parameter; the variable's type of ‘FileCacheSeekableStream’ 
(extracted reference type of the local variable declaration) will 
be utilised to expand abbreviation of ‘s’ in the variable name.

Note that before identifying abbreviations, corresponding iden-
tifiers are split using a traditional predefined split function, 
which splits identifiers based on naming conventions and con-
verts all split words to lowercase. For example, either ‘fileName’ 
or ‘file_name’ would be split into ‘file’ and ‘name’. In addition, 
all abbreviation expansion algorithms utilise the function to 
split reference words. Code abbreviation expansion algorithms 
are shown as follows:

For longer identifiers that are composed of multiple words, de-
velopers often select the initial characters of each word as an ab-
breviation during programming, and such an abbreviation form 
is termed as acronym. For example, the identifier of ‘timePer-
Frame’ may be abbreviated as ‘tpf’. When expanding such kind 

FIGURE 2    |    Illustration of AST.
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of abbreviations, the initial characters of each split word are ex-
tracted (lines 1–4) and used to compare with the abbreviation, if 
the abbreviation and combinations of initial characters are the 
same, the split word will be considered as the expansion candi-
date of the abbreviation (lines 5–6). It should be noted that the 
abbreviation may be equivalent to the initial characters of part 
split words, such as the situation of abbreviating ‘setKeystore-
Filename’ as ‘kf’, instead of ‘skf’. To leverage method names to 
expand abbreviations present in formal parameters, this case 
is also considered during the implementation of the algorithm 
(Algorithm 1).

Prefix abbreviations are commonly found in identifier defini-
tion statements, among which ‘String str’ is the most typical 
example. The idea of expanding these abbreviations is to find 
split words that begin with the abbreviation but are not exactly 
equivalent to it in the process of splitting the reference word 
and add them to the set of expansion candidates (lines 1–5). 
Since basic forms of words are usually short, the shortest one 

is selected as the final expansion candidate of the abbrevia-
tion if multiple candidate expansions are obtained (lines 6–10) 
(Algorithm 2).

The term of ‘idx’ is a common dropped letters abbreviation, and 
‘index’ is usually its full name. In the process of splitting the ref-
erence word, every split word and each character in the abbre-
viation are compared sequentially, and if a split word (lines 8–9) 
contains all the characters of the abbreviation, it is appended to 
the list of expansion candidates. Then the next split word and 
each character in the abbreviation are compared again until all 
split words are traversed. The code logic of lines 11–15 is the 
same as lines 6–10 in Algorithm 2, where the shortest word in 
the list of expansion candidates is finally selected, while the pur-
pose of which is to avoid introducing extraneous long words that 
contain abbreviations. Considering that this algorithm is prone 
to generate erroneous expansion results for single-letter abbrevi-
ations, in practice, the length of input abbreviations is limited to 
more than 1 (Algorithm 3).

ALGORITHM 1    |    Acronym expansion.

ALGORITHM 2    |    Prefix abbreviation expansion.
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In summary, context information such as parameter types, 
method names, and actual parameters passed into called meth-
ods are utilised as reference words for formal parameter abbre-
viations in a specific method. Subsequently, the most frequent 
expansion candidate obtained by the three expansion algorithms 
is selected as the final choice. For abbreviations contained in pa-
rameters and variables within the method body, expansion can-
didates obtained by acronym and prefix abbreviation expansion 
algorithms are favoured based on their types. While the over-
all approaches of the three abbreviation expansion algorithms 
described above are generally consistent with that of Jiang 
et al. (2020), the main distinction arises from the original study's 
focus on expanding abbreviations in parameters and evaluation 
on 9 open-source projects, compared to our need to expand 
abbreviations nested in both parameters and variables within 
datasets containing approximately 4.7 k and 0.5 M projects, re-
spectively. Consequently, in our implementation, we encounter 
more specific scenarios, such as the discovery of ‘setKeystore-
Filename’ during expanding acronyms, and address these issues 
to balance precision and recall as effectively as possible. More 
detailed information can be found in our open-source code.

3.2   |   Unigram-Based Subword Segmentation

As shown in Figure  1, after obtaining the expanded code 
snippets, the new corpus's word collection obtained by the 
traditional split method is deemed as the initial vocabulary; 
then a code-specific tokenizer is trained by leveraging the 
unigram subword segmentation algorithm, which based on 
the unigram language model; finally, the tokenizer is utilised 
to tokenize all code-summary pairs into more fine-grained 

subword sequences before they are fed into the code summa-
rization model.

In the context of automatic code summarization, the unigram 
subword segmentation algorithm aims to segment code se-
quences and their corresponding summary sequences into 
subword units, considering subword-level probabilities. The al-
gorithm follows the steps outlined below:

For a pair of code sequence C and summary sequence S in the 
new corpus D, let c =

(
c1, … , cx

)
 and s =

(
s1, … , sy

)
 correspond 

to subword sequences for C and S, respectively. The unigram 
language model assumes that each subword appears inde-
pendently, so the occurrence probability of a subwords sequence 
c =

(
c1, … , cx

)
 can be formalised as product of each subword's 

occurrence probability:

where V  is the pre-determined initial vocabulary. Let T(C) rep-
resent the set of segmentation candidates for C, then the most 
likely segmentation sequence can be formulated as:

After that, the expectation maximisation (EM) algorithm is used 
to maximise the following marginal likelihood ℒ, and estimate 

(1)

P(c)=

x∏
i=1

p
(
ci
)

∀ici∈ ,

∣ ∣∑
i=1

p
(
ci
)
=1

(2)c∗ = argmax
c∈  (C)

P(c)

ALGORITHM 3    |    Dropped-letters abbreviation expansion.
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the occurrence probability of subwords in the form of hidden 
variables P

(
ci
)
.

where  =
{⟨
C(j), S(j)

⟩}∣∣

j=1
=
{⟨
c(j), s(j)

⟩}∣∣

j=1
 represents the new 

code-summary corpus, and ∣ D ∣ is the size of the corpus.

Finally, following steps are iterated over until the desired vocab-
ulary size ∣ V ∣ is reached:

1.	 Maintain a fixed vocabulary and use the EM algorithm to 
optimise P(c).

2.	 Calculate the loss �i for each subword ci, where �i repre-
sents the change in the loss value of ℒ when �i is removed 
from the current vocabulary.

3.	 Sort all subwords according to �i and retain the top n% of 
subwords.

Note that high-frequency basic words, including single char-
acters and keywords in the programming language, should al-
ways be kept in the vocabulary to prevent issues of OOV and 
over-fine-grained tokenisation, so that critical semantic infor-
mation in initial sequences can be preserved as much as pos-
sible. Finally, a vocabulary that contains subword tokens and 
their corresponding occurrence probabilities is obtained, and 
the trained tokenizer utilises Equation (2) to generate the most 
likely subword sequences c∗ and s∗ for each pair of C and S based 
on the final vocabulary.

In practice, the tokenizer is used to tokenize each word in the 
target sequence sequentially. If a word can be represented by a 
combination of multiple tokens in the vocabulary, it will be to-
kenized based on (1) whether the tokenized subword is included 
in the pre-split word set of code and the sequence in the same 
method, which gives subword candidates occurring in some-
where of the same method higher priority; (2) the number of 
tokens after tokenisation, which means shorter subword candi-
dates would be a priority. Eventually, the semantically preserved 

and/or shortest tokenisation result from the Top-k subword 
combination candidates will be selected.

By leveraging the vocabulary that includes characters, com-
mon subwords, and words, rare words in almost all codes and 
summaries can be properly tokenized. Most importantly, the 
fine-grained and semantically preserved subword representa-
tion exposes more meaningful information, which is expected 
to further improve the performance of the code summariza-
tion model.

3.3   |   Semantic Enhanced Transformer for Code 
Summarization

Figure 3 shows the framework of SETCS. Similar to most code 
summarization models, SETCS utilises the encoder-decoder 
framework, and adopts the Transformer model as backbone. 
Both encoder and decoder of the model are stacked with N iden-
tical layers, and each layer contains several sublayers. Specially, 
SETCS takes both original and modified code sequences as input 
of the encoder, while only original summary sequences are fed 
into the decoder. Besides, the relative positional encoding (Shaw, 
Uszkoreit, and Vaswani 2018), instead of Transformer's default 
positional encoding mechanism, is used to leverage representa-
tions of relative positions between elements of input sequences 
effectively.

Given that the modified code sequence is typically longer than the 
original one, after obtaining the optimal subword sequence c∗ of a 
source code sequence C, we insert special <pad> tokens into the 
original code sequence, making its length equal to the modified 
code sequence. This operation aims to align these two sequences 
precisely and avoid improper concatenation in the latter. Using 
a predefined embedder class, these sequences are converted into 
dense vector representations that capture the lexical information 
of both the original and modified code. Following that, embed-
dings of C and c∗ are generated and concatenated together:

where ec′ and ec∗ represent embedding of original and tokenized 
code sequence separately. The word embeddings shown in three 

(3)ℒ =

∣∣�
j=1

log
�
P
�
C(j)

��
=

∣∣�
j=1

log
⎛
⎜⎜⎝

�
c∈  (cj)

P(c)
⎞⎟⎟⎠

(4)eC = concat
(
ec� , ec∗

)

FIGURE 3    |    Framework of SETCS.
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are actually stacked together, similar to the representations 
shown in Figure 1. However, we have separated them for better 
understanding.

To obtain the code representation rc that fuses features of both 
input sequences, the concatenated code embedding eC is sent 
into a customised network consisting of a Linear layer and a 
ReLU activation followed:

where We and be are learnable parameters in the form of matrix 
and vector, respectively. After that, rc is fed into the encoder that 
is composed of a multi-head self-attention sublayer and a feed-
forward sublayer.

The multi-head self-attention sublayer consists of h heads 
to keep the model focused on information at different loca-
tions in the input representation. Each head performs the 
self-attention function in parallel and computes an output se-
quence z =

(
z1, … , zx

)
 for the input representation of code, 

rc =
(
r1, … , rx

)
 of x elements:

where rm ∈ ℝ
dr, zi ∈ ℝ

dz. The involved weight coefficient �mn can 
be formulated as:

where emn is computed via a scaled dot-product attention:

The parameter matrices WQ, WK, and WV ∈ ℝ
dr×dz are unique 

per sublayer and head. The encoding vectors pVmn and pKmn ∈ ℝ
dz 

include the relative position information between the input ele-
ments rm and rn.

Similarly, the outputs of each head are then concatenated to-
gether and fed into the feedforward network sublayer. The only 
difference between our customised feature fusion network and 
the feedforward layer is that the latter consists of an additional 
linear transformation:

where W1, W2, b1, and b2 are trainable parameters, and Z rep-
resents output of the multi-head self-attention sublayer. Note 
that each sublayer in the model is followed by a residual connec-
tion and layer normalisation, which are omitted from Figure 3 
for brevity.

Compared to the encoder, each layer of the decoder contains 
an additional masked multi-head self-attention sublayer. This 
sublayer is designed to prevent the model from seeing future 

information during the prediction of the next word. It achieves 
this by applying a mask to the part of the summary sequence 
that comes after the current word to be predicted. This ensures 
that the model's attention is focused only on the known part of 
the sequence during the training phase. After passing through 
the multi-head self-attention sublayer, the token representa-
tions are passed through a feedforward sublayer. Each token 
representation in the target summary sequence is generated se-
quentially, with each token's generation based on the current 
encoding state and the outputs generated for the previous to-
kens. This process allows the model to build up a context for the 
current prediction. Finally, the output of the decoder is passed 
through a softmax activation function. This function maps the 
raw model output to a probability distribution over the possi-
ble next tokens, making it possible to select the most likely next 
token for the summary.

4   |   Experimental Setup

4.1   |   Datasets

Given the indispensable role of project information in code ab-
breviation expansion, we exclude the dataset open-sourced by 
Hu, Li, Xia, Lo, and Jin (2018), even though it is relatively small 
in scale and has been more widely evaluated, due to its lack of 
project information. Instead, we conduct experiments using the 
Funcom dataset (LeClair, Jiang, and McMillan  2019) and the 
Java portion of the CodeSearchNet corpus (Husain et al. 2020), 
henceforth referred to as CSN-Java.

The CSN corpus, sourced from the GitHub open-source re-
pository, comprises code snippets and corresponding sum-
mary descriptions across six programming languages. Among 
them, CSN-Java contains approximately 4.7 k samples from 
nearly 0.5 M projects. The Funcom dataset, originated from the 
Sourcerer repository open-sourced by Lopes et al.  (2010), con-
sists of 2.1 M Java samples from around 29 k projects, as prepro-
cessed by LeClair, Jiang, and McMillan (2019).

Despite the preliminary filtering of these two code summariza-
tion datasets, we observed a significant number of low-quality 
samples. These could negatively impact or inflate the evalu-
ation results of code summarization models (LeClair, Jiang, 
and McMillan 2019; Allamanis 2019). As a result, we remove 
samples that meet any of the following conditions during the 
extraction of code and summaries from source code files.

1.	 The code cannot be parsed, or it is not recognised as a 
method declaration. This step is necessary for the process 
of code abbreviation expansion.

2.	 The length of the split code or summary sequence is less 
than three. Most of these samples contain fragmented in-
formation with very limited meaning.

3.	 The summary is identified as Self-Admitted Technical 
Debt (SATD). These summaries are consisted of meaning-
less contents such as TODO/Fixme.

4.	 The summary includes auto-generated phrases such 
as ‘auto generated’ or ‘generated by’, which is usually 

(5)rc =max
(
0, eCW

e + be
)

(6)zi =

x∑
m=1

�mn

(
rmW

V + pVmn
)

(7)�mn =
exp

�
emn

�
∑x

o=1 exp
�
emo

�

(8)emn =
rmW

Q
�
rnW

K+pKmn
�T

√
dz

(9)FeedForward(Z) =max
(
0,ZW1 + b1

)
W2 + b2
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associated with auto-generated code that need to be re-
moved according to previous studies (LeClair, Jiang, and 
McMillan 2019; Hu et al. 2020; Husain et al. 2020).

5.	 The contents of the summary are identical, occur more 
than 300 times, and do not relate to the actual functionality 
of the corresponding code.

6.	 The code is an exact or near duplicate, which may inflate 
model evaluation results (Allamanis 2019).

In the process of dataset filtering, we use the javalang1 library 
to parse the code, the SATD detection tool2 to identify SATDs, 
and the Near-Duplicate Code Detector3 to detect cloned codes, 
respectively. Refer to LeClair, Jiang, and McMillan (2019), both 
filtered datasets are partitioned into training, validation, and test 

set by project, maintaining a ratio of 90:5:5. The third column in 
Table 2 shows the number of code-summary pairs in two filtered 
datasets. For clarify, these filtered dataset are referred to as the 
original dataset used in subsequent experiments.

4.2   |   Exploratory Experiments

To investigate the potential adverse effects of abbreviations in 
code on code summarization models, we conduct exploratory 
experiments by actively augmented the prevalence of abbrevi-
ations in the code. We then observe the resultant changes in 
model performance on both the original and abbreviated data-
sets. This allowed us to assess the impact of abbreviation-rich 
code on the effectiveness of code summarization.

TABLE 2    |    Statistics of code-summary pairs, parsed identifiers, split identifiers, identified abbreviations, and expanded abbreviations in two 
datasets.

Dataset Partition

Code-
summary 

pairs
Parsed 

identifiers Split identifiers
Identified 

abbreviations
Expanded 

abbreviations

CSN-Java Train 368,224 12,996,895 22,424,406 3,620,121 602,310

Valid 16,846 602,239 1,028,123 187,108 30,129

Test 16,746 595,283 994,543 137,407 26,048

Total 401,816 14,194,417 24,447,072 3,944,636 658,487

Funcom Train 1,371,687 16,896,844 28,956,036 4,368,006 931,854

Valid 86,165 1,077,001 1,850,750 271,223 59,134

Test 81,642 1,022,339 1,753,158 259,266 61,124

Total 1,539,494 18,996,184 32,559,944 4,898,495 1,052,112

FIGURE 4    |    Radar map showing performance degradation of models on original and abbreviated CSN-Java datasets.
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Specifically, we crawl open-source Java projects with over 20 
stars from GitHub and extract parameters, variables, and their 
corresponding types from the parsed code. If a specific pa-
rameter or variable was identified as an acronym, prefix, or 
dropped-letters abbreviation of its corresponding type, the pa-
rameter or variable and it's type will be added to the expansion-
abbreviation library. Ultimately, we obtain a library containing 
5956 pairs of expansion and abbreviation. Using this library, 
we replace identifiers in the CSN-Java dataset that match the 
expansions with corresponding abbreviations. To minimise 
the influence of manually introduced abbreviations on the 
original semantic meaning of code in the dataset, identical 
identifiers in a code snippet will be replaced with the same 
predetermined abbreviation. If an identifier can be replaced 
with multiple different abbreviations, it will be randomly 
replaced with an abbreviation that does not duplicate exist-
ing identifiers in the current code snippet. Subsequently, we 
train and test two representative code summarization models, 
Seq2Seq and Transformer, on both the original and abbrevi-
ated datasets, and evaluate the models' performance using 
common evaluation metrics, namely BLEU-4, METEOR, and 
ROUGE-L. Detailed information regarding the models and 
evaluation metrics used in the experiments will be provided 
in Sections 4.4 and 4.5, respectively.

The changes in evaluation metrics for Seq2Seq and Transformer 
models on the original and abbreviated datasets are depicted in 
Figure 4. It is evident from the results that increasing the pro-
portion of abbreviations in the dataset negatively impacts the 
performance of code summarization models. Both models ex-
hibit a decrease of approximately 1.5, 2, and 3.5 points in the 
BLEU-4, METEOR, and ROUGE-L metrics, respectively, when 
more abbreviations are introduced into the dataset. These find-
ings suggest the potential for enhancing the performance of code 
summarization models by minimising the presence of abbrevia-
tions in the datasets.

4.3   |   Preliminary Experiments

Studies in the code abbreviation expansion domain define a 
word as an abbreviation if it if not found in an English dictio-
nary (Jiang et al. 2020; Di Martino, Maggio, and Corazza 2012). 
We employ the PyEnchant4 library to identify abbreviations 
from split identifiers. Specifically, words not included in the 
‘en_US’ dictionary of the enchant library are considered abbre-
viations. Additionally, single letters, with the exception of ‘a’, are 
also treated as abbreviations to complement the identification 
results. The last four columns in Table  2 show the number of 
parsed identifiers, split identifiers, identified abbreviations, and 
expanded abbreviations in two datasets respectively. It can be 
found that more than 25% of identifiers contain abbreviations. 
After leveraging abbreviation expansion algorithms, about 21% 
of the abbreviations in the Funcom data set are expanded, while 
this percentage in CSN-Java is approximately 17%. We attribute 
the difference to: (1) Compared with the Fucnom dataset, each 
code snippet in CSN-Java contains a larger number of abbrevia-
tions on average (about 3–10), indicating that there is substantial 
room for exploration in abbreviation expansion for this dataset. 
(2) The projects in CSN-Java contain partial methods, which 

means that only a fraction of the full method implementation 
is present in the dataset. Consequently, the amount of context 
information available for expanding abbreviations is inherently 
limited.

Given that the precision of abbreviation expansion directly 
or indirectly affects the performance of code summarization 
models in subsequent experiments, we randomly sampled 1000 
expanded abbreviations from two datasets for manual evalua-
tion. Specifically, we found two cases of expansion errors:

1.	 The term abbreviation is contained within the reference 
word. For example, ‘uri’ typically refers to the Uniform 
Resource Identifier. However, due to the presence of 
‘Security’ in the method name ‘getSecurityProtocol’, the 
split ‘security’, as a reference word, was incorrectly inter-
preted by the Dropped Letters expansion algorithm as the 
full name of the abbreviated parameter ‘uri’.

2.	 There are multiple expansion candidates in the reference 
words. For example, when expanding the abbreviated 
parameter ‘p’ using the Acronym expansion algorithm, 
the ‘player’ from the parameter type ‘PlayerPreferences’ 
was initially identified and determined as its expansion. 
However, based on the context of the function, the expan-
sion corresponding to abbreviation ‘p’ should be ‘prefer-
ences’, or more precisely, ‘player preferences'.

Overall, heuristic-based acronym expansion algorithms 
cannot achieve perfect precision and are susceptible to the 
influence of developer abbreviation habits. The two types 
of expansion errors mentioned above are unavoidable. 
Fortunately, both cases are rare (one case for each type found 
in 1000 manually evaluated samples), and in most times, de-
velopers use abbreviations that include the initials of all words 
in parameter or variable types, which are correctly expanded 
by the utilised algorithms.

During the training of the tokenizer, we set the expected vo-
cabulary size to 30 k, and retain the top 90% subwords at the 
end of each iteration. In the process of dataset tokenisation, 
the final tokenisation result is selected from the Top-9 candi-
date subword combinations for both datasets. More detailed 
information about determining the ‘k’ value will be discussed 
in Section 5.3.

To prevent data leakage, we construct the initial vocabulary 
using only split code and summary words from the training and 
validation sets. When tokenizing words in the test set, we select 
the final tokenisation results by referring only to the split words 
from the code.

The distributions of shared and unique tokens for original, 
abbreviation expanded, and tokenized datasets are shown in 
Figure  5. The outermost navy blue, adjacent dodger blue, and 
innermost light cyan circles in the venn diagram represent 
the unique token distribution of the original, abbreviation ex-
panded, and ULM tokenized datasets, respectively. Numbers in 
the middle represent the quantity of shared tokens of datasets 
in different status, where we can find that trained tokenizers 
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effectively limit vocabulary size of tokenized datasets to less 
than 30 K; numbers on the leftmost part (coloured in navy blue) 
and rightmost part (coloured in light cyan) indicate the quantity 
of unique tokens in the original and ULM tokenized datasets 
respectively. The unique tokens in both ULM tokenized datasets 
are subsequences of longer numerical sequences. In addition, 
basic numeric tokens of 0–9 are also included in vocabularies 
to guarantee all fresh numbers appearing in the test set can be 
properly tokenized via existing numeric tokens. It is worth not-
ing that code abbreviation expansion also reduces the number of 
unique tokens in original datasets to some extent. Even in small 
quantities, these eliminated tokens are usually relatively import-
ant abbreviated identifiers as mentioned earlier. If we don't ex-
pand these abbreviations, they will be generally identified as the 
<unk> symbols due to the low occurrence frequency. However, 
they will likely be tokenized into longer character sequences by 
trained tokenizers after introducing the subword segmentation 
algorithm. Both circumstances may result in the loss of critical 
information. Therefore, we believe that it is necessary to per-
form abbreviation expansion before training and adopting the 
tokenizer. Results of ablation experiments (Section 5.2) and ex-
ample analysis (Section  5.4) on the Transformer baseline will 
demonstrate the effectiveness of abbreviation expansion as well 
as its usefulness in combining with the introduced Unigram-
based subword segmentation method.

4.4   |   Baseline Models

To verify the effectiveness of our proposed methods, we con-
duct experiments using four representative code summarization 
models:

4.4.1   |   Seq2Seq

A classical open-sourced NMT framework (Klein et  al.  2017), 
based on recurrent neural network (RNN) and equipped with 
an attention mechanism. Specifically, this baseline uses LSTM 

(Hochreiter and Schmidhuber  1997) to generate summa-
ries for given code snippets and is adopted by Rencos (Zhang 
et al. 2020), Re2Com (Wei et al. 2021), MLCS (Zhou et al. 2023) 
as model backbone.

4.4.2   |   Transformer

The vanilla Transformer (Vaswani et al. 2017) model incorpo-
rated with relative positional encoding mechanism. Specifically, 
it has been employed by the method of neural code summariza-
tion (NCS) (Ahmad et al. 2020), API2Com (Shahbazi, Sharma, 
and Fard  2021), SiT (Wu, Zhao, and Zhang  2021), AST-Trans 
(Tang et al. 2022) and the framework of SETCS presented in this 
article.

4.4.3   |   Networked Control System

NCS (Ahmad et al. 2020): An enhanced Transformer designed 
for code summarization that utilises both relative positional en-
coding and copying mechanism (See, Liu, and Manning 2017) for 
the first time. The copying mechanism enables the Transformer 
to generate words from the vocabulary and copy from the input 
source code.

4.4.4   |   MLCS

MLCS (Zhou et al. 2023): A state-of-the-art code summarization 
framework based on meta-learning and code retrieval. By op-
timising a unique code summarizer for each target code snip-
pet knowledge learned from the retrieved similar examples, 
MLCS was able to outperform typical deep-learning models and 
retrieval-based neural models.

It is worth noting that since both code summarization data-
sets came from open-source communities, pre-trained code 
models typically utilise larger-scale open-source corpora for 

FIGURE 5    |    Venn diagram showing statistics of shared and unique tokens for original, abbreviation expanded, and tokenized results of two 
datasets.
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pre-training, these models should have encountered test sam-
ples from the datasets used in our study during the pre-training 
stage. Therefore, we excluded these models from the baselines to 
avoid threats of pre-training technique and data leakage to the 
internal validity of this study.

Referring to prior works (Ahmad et al. 2020; Lin et al. 2021; 
Zhou et al. 2023; Wei et al. 2019), we limit the maximum input 
and output lengths for all models to 150 and 30, correspond-
ingly. Meanwhile, we set the batch size, vocabulary size, max-
imum training epochs, and beam size to 64, 30 K, 30, and 4, 
respectively. The best model for code summarization is deter-
mined based on the BLEU scores from the validation set, and 
the training process will be halted if there is no enhancement 
in the BLEU score over 10 successive epochs. All experiments 
are conducted on a Linux server, which is equipped with a 
NVIDIA Tesla P40 GPU. The duration of experiments exe-
cuted on the CSN-Java dataset is less than a day, while those 
performed on the Funcom dataset typically require approxi-
mately 3 days.

4.5   |   Evaluation Metrics

The commonly adopted evaluation metrics, BLEU (Papineni 
et al. 2002), METEOR (Banerjee and Lavie 2005), and ROUGE 
(Lin  2004), are predicated on the same underlying scenario. 
Specifically, for each candidate text, which is the prediction 
result generated by the trained model, there exists a corre-
sponding reference text within the dataset, typically a reference 
summary authored by the developer. The computation of these 
evaluation metrics are fundamentally based on precision and 
recall scores:

where pred, ref, and gramn refers to the candidate text, reference 
text, and the overlapping n-grams, respectively.

The BLEU metric highlights precision, which calculates the geo-
metric average of gramn matches between pred and ref.:

The classical BLEU-4 is calculated by gram4.

The METEOR metric further considers recall, word form, and 
synonym matching, which creates unigram alignment between 
pred and ref., while longer gramn alignment is prioritised in 
this stage.

where � is the default parameter used for evaluation.

Note that the penalty factor � differs in different evaluation met-
rics. The ROUGE metric calculates gramn between pred and ref. 
The calculation formula can be expressed as:

The widely used ROUGE-L is calculated based on the longest 
common sequence.

However, the above-mentioned metrics primarily focus on eval-
uating textual similarity between candidate and reference texts, 
which may penalise semantically equivalent texts that differ in 
wording. To complement these metrics and capture the extent to 
which the candidate text aligns with the semantics of the corre-
sponding code snippet, we also adopt the newly proposed SIDE 
metric (Mastropaolo et al. 2024), which has been shown to align 
well with human assessment. This metric measures the cosine 
similarity between embeddings of the candidate text and the cor-
responding code sequence:

where e refers to embedding generated by a fine-tuned MPNet 
(Song et al. 2020) model via contrastive learning.

In all subsequent experiments, we employ the BLEU-4, 
METEOR, ROUGE-L and SIDE metrics to evaluate the quality 
of the summaries generated by the code summarization models, 
with higher metric scores representing better quality of gener-
ated summaries. For fair comparison, model predictions as well 
as ground-truth references before and after tokenisation are 
used for calculation, and the mean score is deemed as the final 
result for each evaluation metric.

(10)Pn =
gramn(pred, ref)

gramn(pred)
,Rn =

gramn(pred, ref)

gramn(pred)

(11)BLEU = � ⋅ exp

(
1

N

N∑
n=1

logPn

)

(12)METEOR = � ⋅
PnRn

(1 − �)Rn + �Pn

(13)ROUGE =
2PnRn
Rn + Pn

(14)SIDE = cos
(
epred, eC

)

TABLE 3    |    Experimental results of SETCS and baselines on two datasets.

Model

CSN-Java Funcom

BLEU-4 METEOR ROUGE-L SIDE BLEU-4 METEOR ROUGE-L SIDE

Seq2Seq 16.87 13.37 30.24 83.62 25.79 17.44 38.58 85.71

Transformer 16.65 12.76 28.92 83.55 25.11 17.31 37.60 84.06

MLCS 18.17 12.71 30.66 84.64 27.15 18.34 40.34 86.91

NCS 18.22 13.41 31.72 85.86 27.81 18.82 41.07 87.80

SETCS 18.14 13.96 31.66 85.78 27.81 19.62 41.72 88.28

Note: The best performances are highlighted in bold.

 14680394, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13835 by E

ast C
hina U

ni O
f Sci &

 T
ech, W

iley O
nline L

ibrary on [03/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 of 20 Expert Systems, 2025

5   |   Analysis of Experimental Results

For simplicity, this section adopts CAE and ULM to represent 
Code Abbreviation Expansion and ULM-based subword seg-
mentation, respectively. In addition, best results of each metric 
in tables are boldfaced.

5.1   |   Method Validation

Experimental results of SETCS compared with baselines and 
improvements of the baselines after adopting CAE and ULM on 
two datasets are shown in Tables 3 and 4 respectively.

As shown in Table  3, compared to the Transformer baseline, 
the proposed SETCS, which further harnesses the critical se-
mantic information provided by both CAE and ULM, yields an 
improvement of over 2 absolute points across almost all evalu-
ation metrics on both the CSN-Java and Funcom datasets. As 
suggested by Roy, Fakhoury, and Arnaoudova  (2021), this as-
sures systematic enhancements in summarization quality, 
implying that our proposed methods, in conjunction with the 
feature fusion approach, could be effectively employed in other 
code summarization models that utilise a similar framework to 
SETCS. Notably, the NCS model, despite being proposed earlier, 
still outperforms the state-of-the-art MLCS and other baseline 
models that merely leverage code-related semantic information 
on both datasets. Besides, the improvement of SETCS over NCS 
is less significant, underscoring the potent potential of the copy-
ing mechanism. Nonetheless, the primary focus of this study is 
to validate the effectiveness and applicability of CAE and ULM 
on existing code summarization models, rather than proposing 
a new state-of-the-art model. More importantly, SETCS could 
serve as a robust baseline or backbone for future studies on two 
well-curated datasets.

Experimental results in Table  4 demonstrate that the perfor-
mance of all code summarization models improves with the 
adoption of our proposed methods. Specifically, the following 
conclusions can be drawn:

1.	 Compared to the smaller CSN-Java dataset, the overall 
performance improvement of all baseline models on the 
Funcom dataset is more significant. Taking the prevailing 
Transformer model as an example, after adopting CAE and 
ULM, it can achieve score improvements of 7.3%, 6.9%, 
6.7%, and 3.2% in terms of BLEU-4, METEOR, ROUGE-L, 
and SIDE, respectively. More significantly, collaboratively 
utilising both methods could yield 10.0% performance gain 
for Transformer regarding the METEOR metric on the 
CSN-Java dataset, which enables the baseline comparable 
to SETCS and the improved NCS.

2.	 In comparison to the other three metrics, the majority of 
models exhibit relatively larger absolute score gains with 
respect to the ROUGE-L metric on both datasets. We attrib-
ute this phenomenon to the extension of the reference sum-
mary by ULM, coupled with the more granular subword 
representation. This enables the model to capture more 
semantic information and contributes to the observed sig-
nificant improvement.

3.	 Overall, the NCS model exhibits the least performance im-
provement following the adoption of the proposed meth-
ods. This outcome is reasonable given that the multiple 
identical expansion results introduced by CAE could po-
tentially interfere with the copying mechanism employed 
by NCS. Furthermore, both methods, particularly ULM, 
might increase the code length. Any content that exceeds 
the maximum code length limitation is truncated during 
the stages of model training and inference, which could 
lead to the loss of crucial information.

TABLE 4    |    Improvements of baselines after adopting both CAE and ULM on two datasets.

Model

CSN-Java Funcom

BLEU-4 METEOR ROUGE-L SIDE BLEU-4 METEOR ROUGE-L SIDE

Seq2Seq 16.87 13.37 30.24 83.62 25.79 17.44 38.58 85.71

Seq2Seq w/Both 17.40 13.67 30.72 84.57 26.26 18.35 39.54 86.25

(+3.1%) (+2.2%) (+1.6%) (+1.1%) (+1.8%) (+5.2%) (+2.5%) (+0.6%)

Transformer 16.65 12.76 28.92 83.55 25.11 17.31 37.60 84.06

Transformer w/Both 17.60 14.04 30.82 84.83 26.95 18.51 40.12 86.72

(+5.7%) (+10.0%) (+6.6%) (+1.5%) (+7.3%) (+6.9%) (+6.7%) (+3.2%)

MLCS 18.17 12.71 30.66 84.64 27.15 18.34 40.34 86.91

MLCS w/Both 18.45 12.98 31.29 85.35 27.96 18.88 41.29 87.94

(+1.5%) (+2.1%) (+2.1%) (+0.8%) (+3.0%) (+2.9%) (+2.4%) (+1.2%)

NCS 18.22 13.41 31.72 85.86 27.81 18.82 41.07 87.80

NCS w/Both 18.51 13.99 32.25 85.99 28.02 19.10 41.31 88.04

(+1.2%) (+4.3%) (+1.7%) (+0.2%) (+0.7%) (+1.6%) (+0.6%) (+0.3%)

Note: The best performances are highlighted in bold.
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5.2   |   Ablation Experiments

Table 5 presents the experimental results of the Transformer and 
SETCS models after incorporating CAE, ULM, and both meth-
ods, separately, on two different datasets. The primary distinc-
tion between the two sets of ablation experiments lies in the fact 
that only the datasets are modified in the first set of experiments, 
whereas in the latter set, modifications are also made to the mod-
els. Besides, performance of the Transformer model can be seen as 
the ablation result of SETCS without the feature fusion network.

In ablation experiments results of the first group, it is clearly 
that both methods can improve the performance of Transformer 
to various degrees, among which ULM plays a more important 
role. The combination of two methods could bring further im-
provements in terms of almost all textual similarity-based evalu-
ation metrics, where the minor degradation of the METEOR and 
ROUGE-L metrics on CSN-Java can be neglected as difference of 
the absolute value is less than 0.1. Notably, on the CSN-Java data-
set, for both Transformer and SETCS, the proposed ULM could 
bring about the best improvement for the semantic similarity-
based SIDE metric. In fact, compared with the traditional split 
method, code summarization models adopting ULM tokenizers 
have better evaluation results on reference summaries whatever 
before and after tokenisation. Moreover, the experimental results 
of ‘Transformer w/Both’ with 30 k vocabulary on the Funcom 
dataset are still better than that with a 50 k vocabulary. All these 
findings further prove that CAE and ULM can effectively intro-
duce and expose more critical semantic information, which plays 
a key role in improving model's performance. In addition, when 
testing ULM tokenizers in preliminary experiments, we found 
that tokenizers trained with a smaller vocabulary will tokenize 
most nouns in plural forms, resulting in substantial score gains 
in terms of the ROUGE-L metric and decreased performance on 
other metrics, which indicates that the granularity of subword 
segmentation is not the finer the better. Therefore, when train-
ing a tokenizer for the code summarization model, factors such 
as size of the desired vocabulary and length limitations of mod-
el's input and output should be comprehensively considered.

For the second group of ablation experiments' results, it's in-
teresting that CAE plays a more significant role in improving 
performance on the CSN-Java dataset, while ULM plays a more 

significant role in the Funcom dataset. Each of the two methods 
significantly boosts the performance of all metrics compared to 
the Transformer baseline, which indicate the effectiveness of the 
feature fusion network equipped by SETCS. However, the collab-
oration of the two methods yield relatively fewer improvements 
across most evaluation metrics, which contradicts the earlier 
findings. We speculate that the customised network operated in 
SETCS is capable of learning more specific transformations but 
struggles with learning complex patterns when both methods 
are combined. More specifically, the modification of code snip-
pets introduced by CAE is fixed in most circumstances as its al-
gorithms are predefined to expand abbreviations for parameters 
or variables in very specific places, while modifications brought 
by ULM are randomly distributed in different locations of the 
code. In short, this phenomenon can be attributed to the lim-
itations of the feature fusion strategy employed by SETCS, and 
more effective approaches are yet to be discovered. Actually, we 
have explored many other feature fusion strategies but reaped 
relatively fewer improvements compared to method presented 
in this article. These tested strategies include concatenating 
embeddings of both original and modified code sequences from 
another dimension, concatenating embeddings of original and 
differences between both code sequences, concatenating both 
code representations directly, and utilising different customised 
networks when transforming concatenated embeddings to code 
representations. Therefore, we leave this challenge for future re-
search. For the purpose of better illustration and broader appli-
cability, experiments in the subsequent sections are conducted 
on the Transformer baseline.

5.3   |   ULM Tuning and Comparison

In order to determine the appropriate ‘k’ value for the Top-k 
subword combination candidates, as discussed in Section 3.2, 
we carry out experiments using the ‘Transformer w/ULM’ 
model on CSN-Java, with ‘k’ values ranging from 1 to 13 and 
the span set to 2. Additionally, we conduct comparative exper-
iments to further examine the effects of the introduced ULM 
algorithm against basic subword segmentation algorithms. 
The choice to perform these experiments on CSN-Java in-
stead of Funcom is primarily driven by considerations of time 
efficiency.

TABLE 5    |    Ablation experiment results of transformer and SETCS on two datasets.

Model

CSN-Java Funcom

BLEU-4 METEOR ROUGE-L SIDE BLEU-4 METEOR ROUGE-L SIDE

Transformer 16.65 12.76 28.92 83.55 25.11 17.31 37.60 84.06

Transformer w/CAE 17.13 13.38 30.20 84.98 25.47 17.50 38.14 84.31

Transformer w/ ULM 17.42 14.13 30.87 85.36 25.86 17.87 38.79 85.08

Transformer w/Both 17.60 14.04 30.82 84.83 26.95 18.51 40.12 86.72

SETCS w/o CAE 17.84 13.73 31.19 85.89 27.79 19.66 41.68 88.15

SETCS w/o ULM 17.96 14.00 31.61 85.73 27.71 19.64 41.65 88.14

SETCS 18.14 13.96 31.66 85.78 27.81 19.62 41.72 88.28

Note: The best performances are highlighted in bold.
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Figure 6 displays the changing curves of four evaluation metrics, 
where the trend of all curves goes down, up, and then down. 
Table 6 shows experimental results regarding different subword 
segmentation algorithms, where results of the Transformer base-
line, Transformer with the basic BPE algorithm, Transformer 
with the basic ULM algorithm, and Transformer with the intro-
duced ULM algorithm are listed from up to down. The essential 
algorithms operated by both basic and introduced ULM are the 
same, but the latter further optimised the training and tokenisa-
tion procedures of code-specific tokenizers to obtain semantic-
preserved results. Besides, the basic WordPiece algorithm is not 
involved since it is not open-sourced. The ‘k’ value of the intro-
duced ULM algorithm is set to 9 in all experiments on CSN-Java, 
as the overall performance of ‘Transformer w/ULM’ by select-
ing tokenisation results from Top-9 candidates is proved to be 
the best.

Overall, all subword segmentation algorithms could signifi-
cantly improve the performance of Transformer in terms all 
metrics, which is expected. Specifically, the difference between 

each pair of subword segmentation algorithms is relatively small 
in terms of BLEU-4, but differences are obvious when it comes 
to other three metrics. The tactic of selecting most semantic-
preserved tokenisation results from Top-k subword combination 
candidates introduced in this article is proved to be more effec-
tive compared with the direct adoption of basic ULM algorithm, 
which performance is sightly inferior to the introduced ULM 
with k set to 1. To sum up, the introduction of subword segmen-
tation algorithms can bring about remarkable improvements for 
code summarizations models, and the performance could be 
further upgraded if more code-related semantic information can 
be preserved.

5.4   |   Example Analysis

Table  7 illustrates two examples from Funcom. The last four 
rows of the table list generated summaries of the Transformer 
model before and after using the proposed method(s).

For the first code snippet, after using CAE to expand the abbre-
viation ‘msg’ nested in the formal parameter ‘msgNumber’ to 
‘message’ Transformer accurately generates the corresponding 
summaries for the expanded formal parameter ‘message num-
ber’. It is interesting that ULM also enables the model to gener-
ate the correct summary for the abbreviated formal parameter. 
We speculate the code summarization model has the potential to 
generate the corresponding full names for corresponding abbre-
viations, and semantic information exposed by trained tokeniz-
ers convinces the model that the full name of abbreviation ‘msg’ 
in the code should be ‘message’. In other words, both methods 
effectively enhanced the ability of language alignment for code 
summarization models.

When it comes to the second code snippet, although the formal 
parameter ‘feedbacktype’ appears multiple times in the code, it 

FIGURE 6    |    Experimental results of ‘Transformer w/ULM’ with different k values on CSN-Java.

TABLE 6    |    Experimental results of Transformer with different 
subword segmentation algorithms on CSN-Java.

Model BLEU-4 METEOR ROUGE-L SIDE

Transformer 16.65 12.76 28.92 83.55

Transformer 
w/BPE_Basic

17.21 13.21 30.12 84.59

Transformer 
w/ULM_Basic

17.15 13.56 30.53 84.62

Transformer 
w/ULM_Top-9

17.42 14.13 30.87 85.36

Note: The best performances are highlighted in bold.
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is still being identified as <unk> due to its overall low frequency 
in the dataset, which is reflected in the summary generated by 
‘Transformer w/CAE’. Instead of generating <unk> with a rel-
ative small probability, the vanilla Transformer finally chose ‘qti 
rdfs’ as the summary, which appears in the code but has nothing 
to do with the actual functionality of the code. After tokenizing 
‘feedbacktype’ into ‘feedback type’ using the Unigram subword 
algorithm, the model correctly understood its meaning and ac-
curately generated a corresponding summary for it.

In summary, the methods proposed in this article improve the 
performance of the code summarization model at the semantic 
level, and the two methods complement each other. Code ab-
breviation expansion eliminates some rare words. It also avoids 
the unigram subword algorithm tokenizing them into overlong 
subwords. The subword algorithm can expose more abbreviation 
information. If the abbreviation ‘img’ nested in the identifier 
‘imgname’ contained in the code snippet of Table 1 is accurately 
tokenized and expanded, code summarization models will be 
more likely to generate the correct summary ‘image’ for the code. 
Therefore, the subword segmentation algorithm also has prac-
tical implications for the study of abbreviation expansion, and 
proposing more advanced techniques to combine the copying 
mechanism with methods proposed in this article is worthy of 
further exploration as well.

6   |   Conclusion and Future Work

In this article, we propose two methods to enhance the seman-
tic performance of code summarization models. By expanding 

abbreviations within identifiers, we eliminate the uncertainty of 
the corresponding semantic information and allow the model to 
focus more on the identifiers themselves rather than their types. 
Moreover, by leveraging the Unigram subword segmentation al-
gorithm, we train code-specific tokenizers to tokenize code into 
more granular subword sequences, which enables the code sum-
marization model to capture more critical information during 
training and inference stages. Experimental results from three 
typical code summarization models and the presented SETCS 
on two datasets demonstrate the effectiveness of our proposed 
methods.

Future works include:

1.	 Incorporate advanced feature fusion techniques into 
SETCS to unlock the full potential of our proposed meth-
ods, or employ the framework to verify other automatic 
code summarization approaches at either the semantic or 
structural level.

2.	 Explore further how expanding code abbreviations in dif-
ferent proportions and types impacts the performance of 
code summarization models, and how the performance is 
influenced by different subword segmentation algorithms 
with varying vocabulary sizes.

3.	 Apply the methods proposed in this article to pre-trained 
code models and other program understanding or genera-
tion tasks, particularly in conjunction with prompt learn-
ing (Liu et  al.  2023) or meta-learning techniques. This 
could potentially enhance the efficiency and performance 
of these models and tasks.

TABLE 7    |    Two illustrative examples from the Funcom dataset.
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To facilitate future research, we have made datasets used in ex-
periments, as well as the source code of SETCS, publicly avail-
able at https://​github.​com/​Hugo-​Liang/​​SETCS​.
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Endnotes

	1	https://​github.​com/​c2nes/​​javalang.

	2	https://​github.​com/​Tbabm/​​SATDD​etect​or-​Core.

	3	https://​github.​com/​micro​soft/​near-​dupli​cate-​code-​detector.
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