JIT-Coka: An Improved Framework for
Just-in-Time Defect Prediction and Localization
Using Fused Features of Code Change

Yuguo Liang![0009-0002-8738-2891] " Chengcheng Wu'!, Wentao Chen!,
Guisheng Fan'2®) and Huiqun Yu!?®)

! Department of Computer Science and Engineering, East China University of
Science and Technology, Shanghai 200237, China
2 Shanghai Engineering Research Center of Smart Energy, Shanghai 201103, China
¥{gsfan,yhq}@ecust.edu.cn

Abstract. Just-in-Time Defect Prediction and Localization (JIT-DP
and DL) play a crucial role in software quality assurance by identify-
ing defective code changes and locating faulty lines at the time of code
submission. While existing methods leverage either handcrafted expert
features or semantic features extracted by deep learning models, few
explicitly distinguish or effectively fuse these two types of information.
In this paper, we propose JIT-Coka, an improved framework for JIT-
DP and DL tasks that combines an encoder-decoder based pre-trained
model of code (CodeT5) with KANLinear, which is a spline-based adap-
tive nonlinear classifier used to model fine-grained nonlinear relationships
between semantic and expert features. We conduct comprehensive exper-
iments on the high-quality JIT-Defects4J dataset, evaluating JIT-Coka
and representative baselines using multiple metrics. Results show that
JIT-Coka significantly outperforms state-of-the-art models in defect pre-
diction, improving F1 and MCC by 6.8% and 8.5% respectively compared
to JIT-Smart, while maintaining competitive performance in DL.

Keywords: Software Defect Prediction - Defect Localization - Just-in-
Time - Software Quality Assurance - Pre-Trained Models

1 Introduction

Software defects, also known as bugs or faults [7], can manifest in various forms
such as API misuse, coding errors, style violations, and security vulnerabilities
[28]. Traditional defect prediction (DP) methods have primarily focused on iden-
tifying defective components at a coarse granularity, such as files or packages.
However, these approaches face significant challenges in terms of identifying re-
sponsible personnel and delaying defect detection [12]. To address these issues,
research has gradually shifted toward finer-grained Just-in-Time Defect Predic-
tion and Localization (JIT-DP and DL), which aims to automatically detect
buggy code changes and further localize the defective lines, thereby reducing the
debugging and testing burden on software developers and testers. Consequently,

2 Yuguo Liang et al.

JIT-DP and DL have become critical research directions in the field of software
engineering [37, 24].

JIT-DP and DL have evolved from traditional machine learning paradigms
to deep learning approaches, with the recent application of pre-trained models
achieving promising results in the field. Earlier models specifically designed for
JIT-DP and DL were based on traditional machine learning methods [19, 13,12,
34, 37]. These models typically relied on carefully crafted change-level metrics,
such as code churn, change diffusion, historical data, and author experience, also
referred to as expert features [21], to identify defective commits, and further
applied techniques like n-gram or bag-of-words to localize defective lines [33, 24].
Recent studies [38,21, 3] have begun to introduce pre-trained models of code
(CodePTMs), trained on large-scale multilingual code corpora, as the backbone
to learn semantic representations (also called semantic features [21]) from code
changes. These models often integrate expert features into the training process
for JIT-DP and DL, achieving promising results on benchmark datasets.

However, current JIT-DP and DL research still suffers from several limita-
tions. On the one hand, existing models [21,3] that combine expert features
with semantic features do not implement mechanisms to explicitly distinguish
these two types of features; instead, they simply concatenate the expanded ex-
pert and semantic features before feeding them into the final classifier. Further-
more, although encoder-decoder architecture-based pre-trained models of code
(CodePTMs) have demonstrated strong performance across multiple software
engineering tasks [22,23, 36], existing JIT-DP and DL methods are still built
upon encoder-only CodePTMs (e.g., CodeBERT [5]), which are pre-trained on a
limited range of programming languages and tasks. This can restrict their prac-
tical performance and limits their extensibility to generative tasks. For example,
when building a multi-task model capable of both JIT-DP and commit mes-
sage generation [16], additional decoders (e.g., GPT-2 [25]) must be attached to
encoder-only CodePTMs, whereas encoder-decoder architectures naturally sup-
port such tasks.

On the other hand, most JIT-DP methods tend to evaluate models using only
a limited subset of common classification metrics, such as threshold-independent
AUC-ROC and threshold-dependent Fl-score. Recent research [20] has shown
that scores of these metrics convey limited information when applied to imbal-
anced DP datasets. For instance, AUC-ROC score often yields overly optimistic
evaluations, while in practice a specific classification threshold (e.g., 0.5) must be
applied. Meanwhile, an F1 score alone cannot reveal whether a model is better
at precision or recall. Besides, more comprehensive metrics such as Matthews
Correlation Coefficient (MCC), which captures the full picture of the confusion
matrix, should also be reported for a more balanced evaluation [35].

To bridge these gaps, we propose JIT-Coka, a JIT-DP and DL model built
upon CodeT5 and K ANLinear, which is a spline-based adaptive nonlinear clas-
sifier inspired by the Kolmogorov—Arnold representation theorem [17]. We con-
duct a comprehensive evaluation on the JIT-Defects4dJ dataset, using multiple

JIT-Coka: An Improved Framework for JIT-DP and DL 3

evaluation metrics to compare JIT-Coka against existing dedicated models. Our
key contributions are summarized as follows:

— We perform comprehensive experiments on representative JIT-DP and DL
models using the high quality JIT-Defects4J dataset and evaluate them with
multiple metrics to fill the evaluation gap in prior studies.

— We develop JIT-Coka, a model applicable to both JIT-DP and DL tasks.
On the DP task, JIT-Coka achieves significantly better performance than
the current state-of-the-art model (JIT-Smart) in terms of Precision and
MCC, while maintaining comparable performance in DL.

— We conduct a comprehensive ablation study to validate the effectiveness of
each component of JIT-Coka. Moreover, the implementation and trained
models are made publicly available ? to facilitate future research.

2 Related Work

2.1 Pre-Trained Models of Code

Pre-trained models (PTMs) have shown strong generalization in NLP and in-
spired similar approaches in software engineering. CodePTMs aim to learn trans-
ferable code representations and are typically based on the Transformer archi-
tecture [30]. According to their backbone structure, they can be categorized
as encoder-only (e.g., CodeBERT [5], GraphCodeBERT [6]), decoder-only (e.g.,
CodeGPT [18]), or encoder-decoder (e.g., PLBART [1], CodeT5 [32]). These
models are typically pre-trained in an unsupervised manner on large-scale code
corpora, using tasks like Masked Language Modeling or Denoising Autoencoding
to learn general code representations. They can then be fine-tuned with a small
amount of labeled data to adapt to specific downstream software engineering
tasks such as automatic code summarization [15].

It is worth noting that CodeBERT, as one of the early widely used CodePTMs,
was pre-trained on the CodeSearchNet corpus, which includes six programming
languages: Python, Java, JavaScript, Ruby, Go, and PHP. In contrast, CodeT5h
further expanded its pre-training data by including C and C+# code, thereby en-
hancing its generalization ability across different programming languages. Later
models like CodeT5+ [31] further improved performance by using larger and
more diverse corpora. Additionally, encoder-only models (e.g., CodeBERT) are
generally more suitable for code understanding tasks, while decoder-only models
(e.g., CodeGPT) excel at code generation tasks. Encoder-decoder models (e.g.,
CodeT5) combine the advantages of both, enabling them to handle both code
understanding and generation tasks [36, 22, 23].

2.2 Just-in-Time Defect Prediction and Localization

Early studies in JIT-DP typically involved extracting key information from code
changes and applying machine learning techniques to build predictive models.

3 https://github.com/Hugo-Liang/JIT-Coka

4 Yuguo Liang et al.

Building upon prior work, Kamei et al. [12] proposed 14 expert-designed change-
level features derived from five dimensions: size, diffusion, purpose, history, and
author experience. They constructed a JIT-DP model based on logistic regression
using these features. Following this, the DBN-JIT [34] model leveraged Deep
Belief Networks to model the same expert features. The JITLine [24] model
further combined expert features with token-level information extracted from
code changes as input to a Random Forest [2] classifier for DP. Additionally, it
employed LIME [26] to interpret token-level contributions, enabling DL.

Subsequent multi-task learning methods based on deep learning focused on
extracting semantic information directly from the content of code changes for
both JIT-DP and DL. DeepJIT [10] employed TextCNN [14] to encode both
code changes and commit messages for predicting whether a commit was defec-
tive. Later, CC2Vec [11] introduced a hierarchical representation strategy that
differentiated between added and deleted lines of code. However, Zeng et al. [37]
observed that models like DeepJIT and CC2Vec did not consistently outperform
simple logistic regression models (such as LApredict) that relied solely on basic
code change metrics.

More recent JIT-DP and DL models have started integrating semantic fea-
tures obtained from pre-trained code models (CodePTMs) with the 14 expert
features for final classification. In particular, JIT-Fine [21] and the current state-
of-the-art JIT-DP model JIT-Smart [3] feed both commit messages and code
changes into CodeBERT to obtain semantic representations, which are then
concatenated with dimension-expanded expert features for DP. The difference
lies in their DL approach: JIT-Fine uses an attention mechanism to aggregate
token-level defect contribution scores to the line level and performs localization
by ranking, while JIT-Smart introduces a specially designed Defect Localization
Network (DLN) composed of bidirectional LSTMs and attention mechanisms for
both DP and DL tasks.

In contrast, our proposed model JIT-Coka employs a KANLinear module to
explicitly distinguish semantic features from expert features, aiming to improve
DP performance. Furthermore, we incorporate CodeT5 to enhance the model’s
overall capability in both DP and DL tasks.

3 Approach

Figure 1 illustrates the framework of our proposed JIT-DP and DL model, JIT-
Coka. In the model training and testing part, the preprocessed data go through
three stages: input representation, KANLinear classification, and defect predic-
tion and localization. The core idea is to leverage an encoder-decoder based
CodePTM (i.e., CodeT5) to capture semantic features of commit message and
code changes, further fuse these features with expert features, and finally classify
the fused features using the customized KANLinear. In the meantime, the line-
level code changes are fed into the CodeT5 model to generate token embeddings,
then the defect localization network (DLN) is utilized to locate defective lines.

JIT-Coka: An Improved Framework for JIT-DP and DL 5

Data Preprocessing Model Training & Testing
. — 4 (©]
HEER @)
— {~ - Transform - » -
HEER : i
HEER ;
Expert Metrics O Tanh

Expert Features :
- i
- ;

(T

—_—

Learnable Activation Functions
3 o C
40O i Vel B Snﬂmax N (J? 5
‘@ Defdctive Clean

. }

=

Linear Transformation

Defect Prediction

[O '..‘

’ ! Fused Features KANLinear |
: |
TP s (A |
o) ” ~M® | | Semantic Features ! !
l MLP !
g""e C,h:“g“l CodeTs i !
(Commit-Level) i Line Attention -
I

Token Attention

g (e

Token Embeddings Defect Localization

Code Changes Bi-LSTM
(Line-Level)

Defect Localization Network

Fig. 1. Framework of the JIT-Coka model.

Eventually, the loss of both KANLinear and DLN are calculated and weighted
averaged to update model parameters.

3.1 Input Representation

The model’s input comprises of four parts: expert metrics, commit message,
commit-level and line-level code changes. The commit message and commit-
level code changes and are first tokenized into sequences of tokens and then
concatenated into a unified input sequence. Specifically, let the token sequence
for the commit message be:

M = [my,ma,...,m,), (1)
and the token sequence for the commit-level code changes be:
C:[a’laa27'"7apad17d27"'7dq]3 (2)

where o represents the length of the tokenized message, while p and ¢ represent
the lengths of the tokenized added code and deleted code in the code changes.
The concatenated input sequence is formalized as:

X = [CLS],m1,...,mo,[ADD], a1, ..., ap,[DEL),dx,...,d,,[SEP]}, (3)

where [CLS] and [SEP] are the special beginning and end tokens of the model
input, respectively. The [ADD] and [DEL] tokens serve as the separator for the
code change content. The input sequence X is then fed into the CodeT5 encoder
to obtain its hidden layer representation:

H = CodeT5(X) € R™*%, (4)

6 Yuguo Liang et al.

where n is the predetermined max input length (i.e., 512) of the input sequence,
and d is the hidden layer dimension of CodeT5. The representation of the first
token, YcLs) = H[0] € R?, is used as the semantic feature of the code change.

The normalized expert metrics are passed through a linear layer for dimen-
sionality expansion to match the dimension of the semantic features:

Yer = Linear(k,d)(Y,) € RY, (5)

where k is the number of expert metrics (i.e., 14) for each sample, and Y, € R*
is the normalized value of the expert metrics.

Finally, the semantic features Y|crg) of commit-level code changes and the
expert features Ygp of expert metrics are concatenated to form the fused features
for each sample:

Yer = COHC&t(Y[CLs],YEF) S Rgd. (6)

3.2 KANLinear Classification

To enhance the model’s ability to capture nonlinear relationships among fused
features, we design a classification head based on the KAN, referred to as KAN-
Linear. The fused feature vector Ygr is passed through this KANLinear layer to
obtain the final prediction logits Zxan € R®, where ¢ = 2 denotes the number
of classes (Defective and Non-defective):

Zyan = KANLinear(2d, ¢)(Yrr) € RS, (7)

Unlike a traditional linear layer, KANLinear augments linear transformations
with learnable spline-based nonlinearities, allowing for expressive and adaptive
feature modeling. Formally, the KANLinear transformation can be formalized
as:

KANLinear(x) = Whage - ¢(x) + Wpline - B(x), (8)

where Wi,ee € R°%24 is the weight matrix for the base activation branch,
#(-) is a nonlinear base activation function, Wpline € Rex2dx(g+5) ig the set of
learnable spline weights, B(x) € R2?*(9+5) represents the B-spline basis func-
tions applied to x, ¢ is the number of grid points (i.e., grid size), and s is the
spline order.

In this architecture, each input dimension is independently mapped using
B-spline interpolation defined over a fixed or learnable grid. This mechanism
enables localized, smooth nonlinear transformations while retaining the compu-
tational benefits of linear layers.

Both the base activation and spline basis functions are differentiable and
optimized jointly with the rest of the network via backpropagation. The final
output combines both the globally expressive base path and the locally adaptive
spline path, allowing the model to capture both global trends and fine-grained
variations in the data.

JIT-Coka: An Improved Framework for JIT-DP and DL 7

This hybrid formulation enables the KANLinear to flexibly interpolate be-
tween purely linear and highly nonlinear behavior depending on the data. Em-
pirically, we find that this design improves classification performance, especially
in scenarios where traditional fully connected layers struggle to model subtle
nonlinearities in fused features.

3.3 Defect Prediction and Localization

The defective lines localization method in our proposed JIT-Coka model is pri-
marily inherited by the design of the DLN module in JIT-Smart [3]. It aims to
identify potentially defective lines within commits that are classified as defec-
tive. The key idea is to extract token embeddings for each line from CodeT5 and
apply the DLN for fine-grained localization.

Formally, let the line-level code changes of a given commit be denoted as:

L={l,l,....0,}, (9)

where r denotes the number of changed lines, and each I; is a sequence of tokens.
Each line I; is tokenized and encoded by the CodeT5 encoder to obtain its token
embeddings:

E; = CodeT5(l;) € R'*4, (10)
where t; is the number of tokens in line ;.

The DLN then processes these embeddings through several stages. Specifi-
cally, the Token-level Bi-LSTM layer is firstly utilized for obtaining contextual-
ized token representations for each E;. Then the Token Attention layer is applied
to summarize each line into a single vector. After that, the Line-level Bi-LSTM
layer further processes the line vector to model contextual dependencies. Even-
tually, the Line Attention layer and multi-layer perceptron (MLP) layer are used
to assign importance scores to different lines in a commit. Formally,

Zpin = DLN(EL) € R (11)

To leverage the interaction between classification and localization, we aggre-
gate the prediction output from DLN with the commit-level prediction. Specifi-
cally, the final prediction for DP are computed as:

1
Ppp = Softmax (2 (Zgan + ZDLN))) (12)

where Zk an is the output from the KANLinear layer in the classification module.
During training, we jointly optimize the JIT-Coka model using a weighted
sum of the classification and localization losses:

L17-Coka = ApP * LDP + ADL - LDL, (13)

where App and Apy, are the weights for the classification and localization loss
terms respectively. We use cross-entropy for both loss components.

Importantly, DL is only activated when the model correctly classifies a com-
mit as defective. This design ensures that the line-level DL module is guided by
valid classification signals.

8 Yuguo Liang et al.

4 Experimental Setup

4.1 Baselines

We compare our proposed JIT-Coka against the following baseline methods,
which include both joint JIT-DP and DL models as well as classical JIT-DP-
specific models:

JITLine [24]. This model feeds expert features along with token-level fea-
tures extracted from code changes into a Random Forest classifier for DP. It
then applies a trained LIME model to estimate the contribution of each token,
enabling DL at the line level.

JIT-Fine [21]. JIT-Fine concatenates high-dimensional semantic features
extracted by CodeBERT with expanded expert features, and applies a linear
layer for DP. For DL, it computes the contribution of each token in the modified
code to the final classification result and ranks code lines based on the aggregated
contribution of their tokens.

JIT-Smart [3]. As the current state-of-the-art (SOTA) model for JIT-DP
and DL tasks, JIT-Smart extends JIT-Fine by incorporating the focal loss to
better handle class imbalance. Moreover, it introduces a specialized DLN, sig-
nificantly improving performance in the DL task.

In addition to the above three models that perform both JIT-DP and DL,
we also evaluate the following three classical models designed solely for JIT-DP:

DBN-JIT [34]. This model inputs expert features into a deep belief network
to classify whether a code change introduces a defect.

DeepJIT [10]. As the first deep learning model specifically designed for JIT-
DP, DeepJIT uses TextCNN to extract semantic features from commit messages
and code changes for binary classification.

LApredict [37]. A simple logistic regression model that uses only one expert
feature—the number of added lines of code—to predict defectiveness.

It is worth noting that the CC2Vec [11] model was excluded from our evalua-
tion. During its initial representation learning phase, CC2Vec incorporates data
from the test set, which violates the temporal constraints of the JIT-DP task
[29, 24]. Additionally, as it is not specifically designed for JIT-DP and is compu-
tationally expensive, we chose not to include it in our comparative analysis.

4.2 Dataset

We conduct experiments on the JIT-Defects4J dataset, which was released by
the Ni et al. [21]. This dataset is constructed based on the manually annotated
LLT4J dataset [9], where buggy lines have been labeled with high accuracy,
enabling reliable evaluation of both JIT-DP and DL tasks.

JIT-DefectsdJ consists of 27,319 commit samples from 21 Java projects, to-
taling 177,125 lines of code. These projects span multiple software domains and
cover commit histories from 2001 to 2019. The defect ratios at the commit and
line levels are 8.54% and 7.11%, respectively. Each commit sample contains the
commit message, added and deleted lines of code, and a set of 14 expert features

JIT-Coka: An Improved Framework for JIT-DP and DL 9

extracted using the CommitGuru [27] tool, as originally proposed by Kamei et al.
[12]. These expert features capture various aspects of code changes across five
dimensions: size, diffusion, purpose, history, and author experience, and have
been widely adopted in ML-based JIT-DP studies.

Following prior work, we divide the dataset into training, validation, and
test sets in an 80%-20%-20% split by project. We also ensure that the commits
in the test set occur chronologically after those in the training and validation
sets to satisfy the time-sensitive requirements of JIT-DP evaluation. Summary
statistics of the dataset are presented in Table 1. More detailed distributions for
each project and descriptions of expert features can be found in our open-source
reproduction package.

Table 1. Statistics of the JIT-Defects4]J dataset

s Commit-Level Line-Level
Partition
Commit Defective (Ratio %) Line Defective (Ratio %)
Train 16,374 1,390 (8.49%) 117,818 7,872 (6.68%)
Valid 5,465 467 (8.55%) 32,642 2,611 (8.00%)
Test 5,480 475 (8.67%) 26,665 2,111 (7.92%)
Total 27,319 2,332 (8.54%) 177,125 12,594 (7.11%)

4.3 Research Questions

To evaluate the effectiveness of our proposed JIT-Coka model, we aim to answer
the following three research questions (RQs):

— RQ1: What is the best performance that JIT-Coka and relevant baselines
can achieve on the JIT-DefectsdJ dataset?

— RQ2: How do JIT-Coka and baselines perform over multiple runs on the
JIT-Defects4] dataset?

— RQ3: What is the effectiveness of each component in the JIT-Coka model?

4.4 Evaluation Metrics

We evaluate the DP performance of JIT-Coka and related baselines using five
common metrics derived from the confusion matrix:
Precision. The proportion of true positives among all predicted positives:

Precision = %. Recall (or True Positive Rate, TPR). The proportion of ac-
tual positives that are correctly identified: Recall = TPZ%. F1-Score. The har-

. s . __ 2Xx(Precision xRecall)
monic mean of precision and recall: F1-Score = =5 === TRecall Matthews

Correlation Coefficient (MCC). A balanced metric suitable for imbalanced

datasets: MCC = TPXTN—FPxFN
/(TP+FP)(TP+FN)(IN+FP)(TN+FN)

10 Yuguo Liang et al.

To complement these metrics, we also report the Area Under the Receiver
Operating Characteristic Curve (AUC-ROC), a threshold-independent
metric that measures a classifier’s performance across all thresholds. The ROC
curve plots the False Positive Rate (FPR) against the TPR, where FPR =
%. Note, however, that the AUC-ROC score provides limited discrimina-
tive power unless one ROC curve fully dominates another. Moreover, the use
of AUC as a metric for classification of imbalanced data has been found to be
misleading [8].

For DL, we adopt Top-5 Accuracy and Top-10 Accuracy to evaluate the
model’s ability to rank truly defective lines near the top of its predictions.

Due to space limitations, we omit effort-aware metrics, and instead provide
the complete evaluation results in our open-source reproduction package.

To assess the statistical significance of performance differences across multiple
runs, we conduct one-sided non-parametric Wilcoxon Rank-Sum test, which
is also known as the Mann-Whitney U Test, and compute the corresponding
effect size r to measure the magnitude of the difference. The effect size r is
calculated based on the Mann-Whitney U statistic as: r = ‘Z‘n, where z is the
corresponding standardized test statistic and n is the number of repeated runs
per model (i.e., 5).

This effect size r complements p-values by providing insight into the practical
significance of observed differences, which is especially useful when comparing
model performance across repeated experiments.

4.5 Parameter Settings

Before feature fusion, both the expanded expert features and the semantic fea-
tures have a dimensionality of 768. A Dropout with a rate of 0.1 is applied before
feeding the concatenated features into the final classification head. In the KAN-
Linear module, the grid size g is set to 5, the spline order s is set to 3, and the
base activation function ¢(-) is implemented using SiLU [4]. The loss weights of
App and Apy, are set to 0.3 and 0.7, respectively.

During model training, the batch size is set to 8, the learning rate is set to le-
5, and the total number of training steps is 50. Early stopping is employed with
a patience value of 5 to reduce training time. All experiments are conducted on
a server equipped with an NVIDIA Tesla P40 GPU (24GB), Intel(R) Xeon(R)
Gold 5118 CPU, 100GB of RAM, and running CentOS 7.6. Notably, JIT-Coka
completes training in about 7.5 hours, which is roughly 1.4x faster than JIT-
Smart (= 10.5 hours). For testing, JIT-Coka processes 5,480 samples in 205
seconds (~ 0.037s/sample), nearly identical to JIT-Smart (~ 0.035s/sample).

For the model comparison experiments in RQ1 and RQ2, each model is
trained and evaluated five times using five randomly selected seeds: 42, 88, 1234,
2024, and 2048. It is worth noting that while the original JIT-Smart paper re-
ports the best performance with a seed value of 0, our reproduction results show
that the model performs poorly on DP tasks under this seed and is consistently
outperformed by our proposed JIT-Coka model in most evaluation metrics.

JIT-Coka: An Improved Framework for JIT-DP and DL 11
5 Experimental Results and Analysis

5.1 RQ1: What is the best performance that JIT-Coka and relevant
baselines can achieve on the JIT-Defects4J dataset?

The best performance of JIT-Coka and related baselines on the JIT-Defects4J
dataset for the JIT-DP task and their corresponding DL performance are shown
in Table 2 and Table 3, respectively. Best-performing metrics are highlighted in
bold for each metric. Notably, we primarily select the best-performing experi-
mental results based on the F1 score for the DP task, and report all evaluation
metrics from that experiment. Under this setting, the scores for some metrics
other than F1 may not be the highest. For example, although JIT-Coka achieves
the best F1 score on the DP task, its Top-5/10 Accuracy scores for the DL task
may not be the best among all experiments.

Table 2. Optimal JIT-DP performance of JIT-Coka and related baselines on the JIT-
Defects4J dataset

Model Precision Recall Fl1-score MCC AUC-ROC

Deeper 0.1748 0.4295 0.2485 0.1629 0.6772
LApredict 0.4545 0.0316 0.0591 0.1018 0.6938
DeepJIT 0.2126 0.6632 0.3219 0.2724 0.7911
JITLine 0.6391 0.1789 0.2796 0.3096 0.8087
JIT-Fine 0.4792 0.3874 0.4284 0.3829 0.8777
JIT-Smart 0.5023 0.4611 0.4808 0.4343 0.8916
JIT-Coka 0.5463 0.4842 0.5134 0.4713 0.8887

Table 3. DL performance of JIT-Coka and related baselines when achieving their
optimal JIT-DP performance on the JIT-DefectsdJ dataset

Accuracy
Top-5 Top-10

JITLine 0.1339 0.1214
JIT-Fine 0.1749 0.1672
JIT-Smart 0.5409 0.3943
JIT-Coka 0.5459 0.4038

Model

From Table 2, we observe that although JIT-Coka does not achieve the high-
est scores in either Precision or Recall individually, it ranks second on both
metrics and outperforms JIT-Smart, leading to the best F1 and MCC scores
overall. In contrast, although JITLine and DeepJIT attain the best scores in

12 Yuguo Liang et al.

Precision and Recall respectively, their performance on the other metric is sig-
nificantly worse, resulting in much lower F1 and MCC scores compared to the
CodePTMs-based models (JIT-Fine, JIT-Smart, and JIT-Coka). Furthermore,
while JIT-Smart achieves the best AUC-ROC score among multiple runs, its
advantage over JIT-Coka is minimal, with a difference of only 0.3%.

As shown in Table 3, JIT-Coka also achieves the best Top-5/10 Accuracy
scores. However, the improvements over JIT-Smart are marginal (0.9% and 2.4%,
respectively). We note that improving DL performance on top of strong DP
performance is not trivial, as the computation of DL metrics depends on the
initial DP results. In multiple runs, we observed that the model often performs
worse in DP when it achieves the best DL performance. This pattern is observed
across all three CodePTMs-based models.

Answer to RQ1: JIT-Coka achieves the best performance on
several key metrics for both JIT-DP and DL tasks. Notably, com-
pared to the current SOTA model JIT-Smart, JIT-Coka improves
the F1 and MCC scores by 6.8% and 8.5%, respectively, and also
yields better results in Top-5/10 Accuracy.

5.2 RQ2: How do JIT-Coka and baselines perform over multiple
runs on the JIT-Defects4J dataset?

Figure 2 shows the boxplots of the JIT-DP and DL results for JIT-Coka and
related baselines over five random seeds. Given the clear significant performance
differences between the three CodePTMs-based models (JIT-Fine, JIT-Smart,
and JIT-Coka) and other baselines on multiple metrics, we mark only the sig-
nificance results among these three for simplicity.

e P e
P Deep)iT JIT-Smart
) e LApredict JIT-Coka
0.8 = ¥ g JITLine
% ¥ gy e *
= o o
06 - ok 1) L)
o =) E3 -3
+*
E o 5+ e
> hg & Tl _4 Py
0.4 . = - 2 T
B
- 4+ _ -
- i - - -
02 2 | PY -
- T . - T B -
| | i hg - -
ot -
0.0

Precision Recall F1 Mce AUC_ROC TopSAccuracy Top10Accuracy
Evaluation Metric

Fig. 2. Distributions of JIT-DP and DL performance of JIT-Coka and related baselines
on the JIT-Defects4]J dataset.

Consistent with the observations in RQ1, JIT-Coka consistently outperforms
JIT-Smart in F1 and MCC metrics across multiple experiments, indicating its

JIT-Coka: An Improved Framework for JIT-DP and DL 13

superior defect identification and overall classification capability on the JIT-
Defects4J dataset. Specifically, JIT-Coka significantly outperforms JIT-Smart on
the MCC metric with a large effect size (L), partly due to its significantly better
Precision. While its advantages in Recall and F1 are not statistically significant,
JIT-Coka still achieves higher minimum, average, and maximum scores than JI'T-
Smart on both metrics. The average MCC and F'1 scores of JIT-Coka are 0.4417
and 0.4736, which are 8.0% and 6.1% higher than the corresponding scores of
JIT-Smart (0.4089 and 0.4465). Furthermore, although JIT-Coka significantly
outperforms JIT-Fine on AUC-ROC, the absolute differences are small and not
statistically significant.

Similarly, in the DL task, both JIT-Coka and JIT-Smart significantly outper-
form other DL-enabled baselines in Top-5/10 Accuracy, though the performance
difference between them is not statistically significant. JIT-Coka’s average Top-
5/10 Accuracy scores are 0.5417 and 0.3977, slightly different from JIT-Smart’s
(0.5426 and 0.3922). It is worth noting that although JIT-Coka achieves the best
Top-5/10 Accuracy (0.5612 and 0.4167), its F1 and MCC scores are only 0.4529
and 0.4293. Likewise, JIT-Smart’s best Top-5/10 Accuracy scores (0.5593 and
0.4097) correspond to F1 and MCC of 0.4645 and 0.4188. This reinforces the
idea that DL capability should be evaluated on top of DP performance, rather
than in isolation.

It is also worth mentioning that several specialized models for JIT-DP or DL
show instability on specific metrics, which may limit their practical applicability.
Future work could focus on improving their robustness. Moreover, the machine
learning-based JITLine and the first deep-learning-based DeepJIT model achieve
the best Precision and Recall respectively. Future research could explore ways to
improve their Recall and Precision to enhance overall classification performance.

Answer to RQ2: JIT-Coka consistently achieves significantly
better Precision and MCC scores than JIT-Smart with large effect
size, while maintaining strong DL capability. Conducting multi-
ple experiments and evaluating models with diverse metrics helps
reveal each model’s strengths and weaknesses, providing valuable
insights for further optimization.

5.3 RQ3: What is the effectiveness of each component in the
JIT-Coka model?

To assess the contribution of each component in JIT-Coka, we conduct com-
prehensive ablation studies. Specifically, we test four variants: using CodeBERT
instead of CodeT5 (w/o CodeT5), using a standard Linear layer for DP instead
of KANLinear (w/o KANLinear), removing the DLN module and ranking token-
level attention contributions as in JIT-Fine (w/o DLN), and removing the 14
expert features to rely only on CodeT5-based semantic features (w/o EF). Due
to resource constraints, we perform ablations using the best-performing seed
(2048) of JIT-Coka. The results are shown in Table 4.

14 Yuguo Liang et al.

Table 4. Ablation study of different components in the JIT-Coka model

JIT-DP Metrics DL Accuracy

Model
Precision Recall F1-score MCC AUC-ROC Top-5 Top-10
JIT-Coka 0.5463 0.4842 0.5134 0.4713 0.8887 0.5459 0.4038
—w/o CodeTh 0.5045 0.4674 0.4852 0.4388 0.8905 0.5435 0.4063
—w/o KANLinear 0.5875 0.3958 0.4730 0.4433 0.8881 0.5483 0.4003
—w/o DLN 0.5893 0.4168 0.4883 0.4565 0.8894 0.1992 0.2033
—w/o EF 0.3789 0.4547 0.4134 0.3539 0.8610 0.5424 0.3953

The results indicate that CodeT5 affects both Precision and Recall, with
a greater impact on Precision. Interestingly, this configuration yields the best
AUC-ROC and Top-10 Accuracy scores. In contrast, KANLinear significantly
affects Recall, leading to notable declines in F'1 and MCC even though Precision
remains relatively high. This setup achieves the best Top-5 Accuracy in DL.

Removing the DLN module leads to the best Precision, but poor Recall,
resulting in suboptimal F1 and MCC. Notably, while DP performance is nearly
the second-best, DL performance (Top-5/10 Accuracy) is the worst, suggesting
DLN plays a more critical role in DL than DP, consistent with observations from
the JIT-Smart study.

When expert features are excluded, the model’s Precision drops significantly,
and despite a slight decrease in Recall, the resulting F1, MCC, and AUC-ROC
are the worst. However, DL performance decreases only slightly, indicating that
expert features are more crucial for DP.

Additionally, since the DLN module influences JIT-Coka’s DP performance
through a weighted loss during training, we further investigate the effect of
varying the weight ratios between DP and DL losses. The results are summarized
in Table 5.

Table 5. Performance of JIT-Coka with different loss weight ratios for DP and DL

Loss Weight JIT-DP Metrics DL Accuracy
App Abpr Precision Recall Fl-score MCC AUC-ROC Top-5 Top-10

0.1 0.9 0.4837 0.4695 0.4765 0.4277 0.8853 0.5466 0.4028
0.2 0.8 0.5769 0.4105 0.4797 0.4467 0.8868 0.5379 0.3973
0.3 0.7 0.5463 0.4842 0.5134 0.4713 0.8887 0.5459 0.4038
0.4 0.6 0.5083 0.4526 0.4788 0.4334 0.8882 0.5474 0.4051
0.5 0.5 0.5174 0.4695 0.4923 0.4473 0.8881 0.5478 0.4033
0.6 0.4 0.5208 0.4484 0.4819 0.4382 0.8831 0.5453 0.4069
0.7 0.3 0.4903 0.4779 0.4840 0.4358 0.8885 0.5435 0.4005
0.8 0.2 0.4784 0.4653 0.4717 0.4224 0.8819 0.5518 0.4118
0.9 0.1 0.4715 0.4695 0.4705 0.4203 0.8863 0.5402 0.4004
1.0 0.0 0.5403 0.4379 0.4837 0.4431 0.8818 0.5328 0.3934

JIT-Coka: An Improved Framework for JIT-DP and DL 15

It is evident that when the loss weights for DP and DL are set to 0.3-0.7,
the JIT-Coka model achieves the best DP and overall classification performance
on the JIT-DP task, while also maintaining good performance on the DL task.
Under this setting, the model attains the highest scores in Recall, F1, MCC, and
AUC-ROC.

Although the model achieves the best Precision score when the DP and DL
loss weights are set to 0.2-0.8, its Recall is the lowest under this setting, which
negatively impacts its performance on other comprehensive evaluation metrics.
Similarly, when the DP and DL loss weights are set to 0.8-0.2, the model achieves
the best Top-5/10 Accuracy scores on the DL task, but its DP and overall
classification performance are suboptimal.

Interestingly, within the 0.3-0.7 interval for the DP loss weight, only the
value of 0.4 leads to a relatively poor F1 score for the JIT-Coka model (i.e.,
below 0.48), while in all other cases, the model consistently achieves F1 scores
superior to those of JIT-Smart.

Moreover, when the loss weights are set to 1-0 (i.e., DL is not optimized), the
JIT-Coka model still performs well on the DP task, which is consistent with the
ablation study observations of the DLN module in RQ2. The difference, however,
is that the model continues to perform reasonably well on the DL task instead of
suffering a significant drop. These findings suggest that future work may consider
decoupling the DLN module to construct a dedicated JIT-DL model.

Answer to RQ3: All components of JIT-Coka contribute effec-
tively to its overall performance in both JIT-DP and DL tasks.
While some components may reduce performance on specific met-
rics, they remain essential for achieving strong overall results, in-
dicating that there is still room for further model optimization.

6 Discussion: How do JIT-Coka and baselines perform on
dataset comprising multiple programming languages?

To further evaluate the performance of JIT-Coka on dataset involving multiple
programming languages, we conducted experiments on the dataset released by
literature [37]. This dataset consists of approximately 9.5k samples collected from
six projects with varying programming languages and defect ratios. Among them,
Gerrit, JDT, and Platform are Java projects, Go is a Golang project, OpenStack
is a Python project, and QT is a C++ project. Since this dataset does not
provide line-level defect annotations, we only assessed the JIT-DP performance
of JIT-Coka and the relevant baselines. Following the experimental procedure in
5.1, the distributions of F1 and MCC scores across multiple runs are illustrated
in Figure 3, and the complete results of all evaluation metrics are provided in
our open-source replication package. For consistency with the original paper, we
refer to this dataset as LApredict.

16 Yuguo Liang et al.

09 e
T
0s . i s TN s
o il - =
,Eu:’ﬁ P T e oy i —— ot
06 = . = - - :
Tos e —_—— - R =t
oo — - =4
03 DB JT-Fine. S -+ g
i Jrsmar 2 = pe
o) ok - L
g et g B Opert Pattorm q
Project
',,—Am— DBN-JIT IT-Fine.
s T - = Deep JTsmare
= - S ine)IT-Coka
iy e -) zuf e S it ISk
=uf L =T - - _ r—
gos - SO e - o35 ¥ A _ e
s o 4+ = B E3
= P = - - - - =+Li™
02] A= — 7 -
ii*}“‘ - - -
01 4

Avg. Al Gerit Go Openstack Platform ar

Fig. 3. Distributions of JIT-DP performance of JIT-Coka and related baselines on the
LApredict dataset.

Overall, on the average performance across all projects (Avg. All), JIT-Coka
achieves significantly better F1 scores than JIT-Line and JIT-Fine. In addition,
JIT-Coka consistently outperforms JIT-Smart in terms of the minimum, maxi-
mum, and mean F1 scores. By contrast, JIT-Smart shows a slight advantage in
MCC, but this difference is not statistically significant. It is worth noting that
DeepJIT and JIT-Line achieve the best overall performance on F1 and MCC,
respectively, but their advantages over JIT-Coka are not statistically significant,
and both models perform relatively worse on the other metric.

More specifically, JIT-Coka achieves significantly better F1 and MCC scores
than JIT-Fine and JIT-Smart on the QT project. This result is expected, since
the backbone model of JIT-Coka, CodeT5, was pre-trained on corpora including
the C programming language, whereas the backbone of the other two models,
CodeBERT, was not. In addition, JIT-Coka shows a significant improvement over
JIT-Smart on the JDT project. Although JIT-Coka does not always demonstrate
significant improvements over the best or second-best baselines on other projects,
it still exhibits unique advantages. For instance, it achieves a significantly better
F1 score than DeepJIT on the Go project, while JIT-Fine and JIT-Smart, with
comparable performance, do not.

In summary, JIT-Coka demonstrates overall superior performance on the
multi-language dataset, further confirming the advantage of using CodeT5 rather
than the earlier CodeBERT as the backbone model. Although it does not always
achieve statistically significant improvements over the second-best baseline in
all projects, JIT-Coka consistently maintains mid-to-high ranking performance
across projects, and often outperforms other models in terms of the minimum,
maximum, or mean values of evaluation metrics.

7 Threats To Validity

Construct Validity. In this study, we selected widely accepted metrics such
as Precision, Recall, F1, MCC, AUC-ROC, and Top-K Accuracy to evaluate
model performance. These metrics are consistent with those used in prior studies,

JIT-Coka: An Improved Framework for JIT-DP and DL 17

ensuring comparability and credibility of our results. However, these metrics
may still have limitations. For example, F1 score balances Precision and Recall
but may obscure performance in severely imbalanced datasets. Similarly, Top-K
Accuracy may not fully reflect developer needs in real debugging scenarios. To
mitigate these threats, we relied on both standard benchmarks (JIT-Defects4J)
and multiple metrics, and performed comprehensive ablation experiments to
validate the role of each component. Still, future work could explore more fine-
grained, developer-centric metrics and feature representations to better reflect
real-world constructs.

Internal Validity. Although the architecture of JIT-Coka is designed to
be as simple as possible and allows for easy replacement of relevant modules,
certain parameters still need to be adjusted to validate the results. While we
have conducted experiments on key parameters such as DP and DL loss weights,
resource constraints prevented us from exhaustively exploring all experimen-
tal settings and parameter combinations. For instance, parameters such as the
number of training steps, early stopping strategies, and learning rates may still
pose threats to the validity of our experimental findings. Moreover, the raw
values of expert features may contain noise or redundant information, affecting
the model’s classification performance. Similarly, the quality of commit messages
and code changes can also impact model performance. To mitigate these threats,
we applied Dropout to randomly discard certain neurons before classification to
enhance model robustness.

External Validity. Since model performance may vary on datasets with a
larger or smaller number of samples, practitioners should re-evaluate the model
on their target datasets before deployment. Furthermore, the input methods and
utilization of expert features that work well with JIT-Coka may not be directly
applicable to other models. Future research on JIT-DP and DL models should
consider that the methods optimized for JIT-Coka may not be the optimal choice
for their own models. To mitigate these threats, we have demonstrated the effec-
tiveness of JIT-Coka both theoretically and through comprehensive experiments.
Moreover, our experimental results indicate that JIT-Coka may complement ex-
isting models. Therefore, the proposed approach in this paper exhibits strong
generalizability.

8 Conclusion and Future Work

In this paper, we proposed JIT-Coka, a unified model for Just-in-Time Defect
Prediction and Localization, which effectively integrates pre-trained semantic
features and handcrafted expert features through an adaptive nonlinear classi-
fication module. Leveraging the encoder-decoder architecture of CodeT5 and a
robust KANLinear classifier, JIT-Coka improves the Precision, F1 and MCC for
defect detection. Moreover, the use of the DLN module enables effective line-level
localization, tightly coupled with commit-level classification.

JIT-Coka provides a solid foundation for fine-grained software quality as-
surance and has the potential for broader adoption in practice. Future direc-

18 Yuguo Liang et al.

tions include: (1) improving the defect localization module, e.g., by redesigning
or modularizing the DLN to explicitly enhance localization without harming
prediction, and (2) extending multi-task capabilities by leveraging the encoder-
decoder structure of CodeT5 for related tasks such as commit message generation
or repair suggestion.

Acknowledgement

This work was partially supported by the National Natural Science Founda-
tion of China (No. 62372174), the Computational Biology Program of Shanghai
Science and Technology Commission (No. 23J51400600), the Capacity Building
Project of Local Universities Science and Technology Commission of Shanghai
Municipality (No. 22010504100), the Research Programme of National Engi-
neering Laboratory for Big Data Distribution and Exchange Technologies (No.
2021-GYHLW-01007), and the Shanghai 2024 Science and Technology Inno-
vation Action Plan Star Cultivation (Sailing Program, No. 24YF2719900 and
24YF2720000).

References

1. Ahmad, W., Chakraborty, S., Ray, B., Chang, K.W.: Unified pre-training for pro-
gram understanding and generation. In: Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. pp. 2655-2668 (Jun 2021)

2. Breiman, L.: Random forests. Machine Learning 45, 5-32 (2001)

3. Chen, X., Xu, F., Huang, Y., Zhang, N., Zheng, Z.: Jit-smart: A multi-task learning
framework for just-in-time defect prediction and localization. Proc. ACM Softw.
Eng. 1(FSE) (Jul 2024)

4. Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural net-
work function approximation in reinforcement learning. Neural networks 107, 3—11
(2018)

5. Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B.,
Liu, T., Jiang, D., Zhou, M.: Codebert: A pre-trained model for programming and
natural languages. In: Findings of the Association for Computational Linguistics:
EMNLP 2020. pp. 1536-1547 (Nov 2020)

6. Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., Zhou, L., Duan, N., Svy-
atkovskiy, A., Fu, S., Tufano, M., Deng, S.K., Clement, C., Drain, D., Sundaresan,
N., Yin, J., Jiang, D., Zhou, M.: Graphcodebert: Pre-training code representations
with data flow. In: International Conference on Learning Representations (2021)

7. Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic literature
review on fault prediction performance in software engineering. IEEE Trans. Softw.
Eng. 38(6), 1276-1304 (2012)

8. Hancock, J., Khoshgoftaar, T., Johnson, J.: Evaluating classifier performance with
highly imbalanced big data. Journal of Big Data 10 (04 2023)

9. Herbold, S., Trautsch, A., Ledel, B., Aghamohammadi, A., Ghaleb, T.A., Chahal,
K.K., Bossenmaier, T., Nagaria, B., Makedonski, P., Ahmadabadi, M.N., Szabados,
K., Spieker, H., Madeja, M., Hoy, N., Lenarduzzi, V., Wang, S., Rodriguez-Pérez,

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

JIT-Coka: An Improved Framework for JIT-DP and DL 19

G., Colomo-Palacios, R., Verdecchia, R., Singh, P., Qin, Y., Chakroborti, D., Davis,
W., Walunj, V., Wu, H., Marcilio, D., Alam, O., Aldaeej, A., Amit, I., Turhan,
B., Eismann, S., Wickert, A.K., Malavolta, I., Sulir, M., Fard, F., Henley, A.Z.,
Kourtzanidis, S., Tuzun, E., Treude, C., Shamasbi, S.M., Pashchenko, 1., Wyrich,
M., Davis, J., Serebrenik, A., Albrecht, E., Aktas, E.U., Striiber, D., Erbel, J.:
A fine-grained data set and analysis of tangling in bug fixing commits. Empirical
Softw. Engg. 27(6) (nov 2022)

Hoang, T., Dam, H.K., Kamei, Y., Lo, D., Ubayashi, N.: Deepjit: An end-to-end
deep learning framework for just-in-time defect prediction. In: Proceedings of the
16th International Conference on Mining Software Repositories. p. 34-45 (2019)
Hoang, T., Kang, H.J., Lo, D., Lawall, J.: Cc2vec: Distributed representations of
code changes. In: Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering. p. 518-529 (2020)

Kamei, Y., Shihab, E.,; Adams, B., Hassan, A.E., Mockus, A., Sinha, A., Ubayashi,
N.: A large-scale empirical study of just-in-time quality assurance. IEEE Trans.
Softw. Eng. 39(6), 757-773 (Jun 2013)

Kim, S., Whitehead, E.J., Zhang, Y.: Classifying software changes: Clean or buggy?
IEEE Trans. Softw. Eng. 34(2), 181-196 (Mar 2008)

Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). pp. 1746-1751 (Oct 2014)

Liang, Y.G., Fan, G.S., Yu, H.Q., Li, M.C., Huang, Z.J.: Automatic code summa-
rization using abbreviation expansion and subword segmentation. Expert Systems
42(2), 13835 (2025)

Liu, Z., Xia, X., Hassan, A.E., Lo, D., Xing, Z., Wang, X.: Neural-machine-
translation-based commit message generation: How far are we? In: Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engi-
neering. p. 373-384 (2018)

Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson, J., Soljacic, M., Hou, T.Y.,
Tegmark, M.: Kan: Kolmogorov-arnold networks. In: The Thirteenth International
Conference on Learning Representations (2025)

Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A., Clement, C.B.,
Drain, D., Jiang, D., Tang, D., Li, G., Zhou, L., Shou, L., Zhou, L., Tufano,
M., Gong, M., Zhou, M., Duan, N., Sundaresan, N., Deng, S.K., Fu, S., Liu, S.:
Codexglue: A machine learning benchmark dataset for code understanding and
generation. CoRR abs/2102.04664 (2021)

Mockus, A., Weiss, D.M.: Predicting risk of software changes. Bell Labs Technical
Journal 5(2), 169-180 (2000)

Moussa, R., Sarro, F.: On the use of evaluation measures for defect prediction
studies. In: Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis. p. 101-113 (2022)

Ni, C., Wang, W., Yang, K., Xia, X., Liu, K., Lo, D.: The best of both worlds:
Integrating semantic features with expert features for defect prediction and lo-
calization. In: Proceedings of the 30th ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering. p.
672-683 (2022)

Niu, C., Li, C., Luo, B., Ng, V.: Deep learning meets software engineering: A
survey on pre-trained models of source code. In: Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, IJCAI-22. pp. 55465555
(7 2022)

20

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Yuguo Liang et al.

Niu, C., Li, C., Ng, V., Chen, D., Ge, J., Luo, B.: An empirical comparison of pre-
trained models of source code. In: Proceedings of the 45th International Conference
on Software Engineering. p. 21362148 (2023)

Pornprasit, C., Tantithamthavorn, C.K.: Jitline: A simpler, better, faster, finer-
grained just-in-time defect prediction. In: 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories. pp. 369-379 (2021)

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language
models are unsupervised multitask learners (2019)

Ribeiro, M.T., Singh, S., Guestrin, C.: 7 why should i trust you?” explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining. pp. 1135-1144 (2016)
Rosen, C., Grawi, B., Shihab, E.: Commit guru: Analytics and risk prediction of
software commits. In: Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering. p. 966-969 (2015)

Spacco, J., Hovemeyer, D., Pugh, W.: Tracking defect warnings across versions. In:
Proceedings of the 2006 International Workshop on Mining Software Repositories.
p. 133-136 (2006)

Tan, M., Tan, L., Dara, S., Mayeux, C.: Online defect prediction for imbalanced
data. In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engi-
neering. vol. 2, pp. 99-108 (2015)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems. p. 6000-6010 (2017)
Wang, Y., Le, H., Gotmare, A., Bui, N., Li, J., Hoi, S.: Codet5+: Open code
large language models for code understanding and generation. In: Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing. pp.
1069-1088 (2023)

Wang, Y., Wang, W., Joty, S., Hoi, S.C.: Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. In: Pro-
ceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing. pp. 8696-8708 (Nov 2021)

Yan, M., Xia, X., Fan, Y., Hassan, A.E., Lo, D., Li, S.: Just-in-time defect identi-
fication and localization: A two-phase framework. IEEE Transactions on Software
Engineering 48(1), 82-101 (2022)

Yang, X., Lo, D., Xia, X., Zhang, Y., Sun, J.: Deep learning for just-in-time defect
prediction. In: 2015 IEEE International Conference on Software Quality, Reliability
and Security (QRS). pp. 17-26 (2015)

Yao, J., Shepperd, M.: Assessing software defection prediction performance: Why
using the matthews correlation coefficient matters. In: Proceedings of the 24th
International Conference on Evaluation and Assessment in Software Engineering.
p. 120-129 (2020)

Zeng, Z., Tan, H., Zhang, H., Li, J., Zhang, Y., Zhang, L.: An extensive study
on pre-trained models for program understanding and generation. In: Proceedings
of the 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis. p. 39-51 (2022)

Zeng, 7., Zhang, Y., Zhang, H., Zhang, L.: Deep just-in-time defect prediction: How
far are we? In: Proceedings of the 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis. p. 427-438 (2021)

Zhou, X., Han, D., Lo, D.: Assessing generalizability of codebert. In: 2021 IEEE
International Conference on Software Maintenance and Evolution (ICSME). pp.
425-436 (2021)

