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 A B S T R A C T

The widespread adoption of open-source software (OSS) has introduced new security challenges to the software 
supply chain. While existing studies confirm the basic capabilities of Software Composition Analysis (SCA) 
tools, such as vulnerability detection and dependency resolution. They often focus on single ecosystems or 
detection aspects. This limited scope overlooks real-world complexities, including multi-language ecosystems, 
source and binary dependencies, and adversarial threats. Without a comprehensive evaluation, SCA tools may 
perform well in controlled settings but struggle in more complex scenarios. To address this gap, this study 
proposes a evaluation framework centered on the core functionalities of SCA tools: dependency detection, 
vulnerability identification, and license inspection. It covers three key dimensions including multi-language 
ecosystems compatibility, build forms, and attack defense. Using standardized datasets and quantitative 
metrics, such as precision, recall, F1-score and standard deviation, we evaluate four representative SCA 
tools, including both open-source and commercial options. Results reveal significant limitations in binary 
dependencies, language coverage, and license consistency. SCA tools also face challenges in balancing precision, 
coverage and robustness. The study highlights systemic shortcomings in current SCA tools, revealing that many 
perform like limited-use toys under real-world conditions. It offers data-driven recommendations to guide the 
evolution of these tools into practical, reliable solutions for supply chain security governance.
1. Introduction

Open-source software (OSS) has become pivotal in software de-
velopment, supporting systems across virtually all industries (Duan 
et al., 2017; Li et al., 2024; Ivanova et al., 2024). The OSS supply 
chain (Wermke et al., 2023) is composed of interdependent modules 
and libraries, forming a complex network of dependencies through code 
reuse (Ohm et al., 2020; Ma, 2018). While this complexity enables rapid 
integration of functional components and accelerates development, it 
also introduces significant security risks (Imtiaz et al., 2021; Zhao et al., 
2023a).

Components in the OSS supply chain come from diverse sources and 
may pose risks like security vulnerabilities, license compliance issues 
and version compatibility problems (Zahan, 2023; Tang et al., 2022; 
Wu et al., 2023; Jiang et al., 2024; Dietrich et al., 2023). Once these 
risks propagate, they can severely affect software systems reliant on the 
affected components (Fourné et al., 2023).

For instance, in 2016, the npm package left-pad was deleted by its 
developer (Wikipedia contributors, 2025a). Given its widespread use 
in the front-end ecosystem, its removal caused disruptions in building 
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and deploying numerous projects, leading to website failures. An-
other example is the Log4j2 remote code execution vulnerability in 
2021 (Hiesgen et al., 2024; Zhao et al., 2023b; Wu et al., 2023; Wetter 
and Ringland, 2021). As one of the mainstream logging libraries for 
Java software projects, its vulnerability had a broad impact, caus-
ing significant losses to the information security of governments and 
enterprises.

Software Composition Analysis (SCA) tools analyze open-source 
components used in software projects. They are recommended as a 
key measure for managing open-source risks by assessing the security, 
quality and licensing of these components (Ladisa et al., 2023). An 
increasing number of enterprises and development teams have recog-
nized the crucial role of SCA tools in safeguarding OSS supply chains 
and have begun to actively use them (Zhan et al., 2020; Zhao et al., 
2023b; Prana et al., 2021; Dann et al., 2021; Jiang et al., 2024; Imtiaz 
et al., 2021). These tools can analyze software project dependencies, 
identify potential vulnerabilities and license issues and support devel-
opers in making timely corrections. However, it is important to note 
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data mining, AI training, and similar technologies. 
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that existing SCA tools vary significantly in terms of accuracy, coverage 
and usability (Dietrich et al., 2023). On the one hand, there are 
performance differences across tools, particularly in core functionalities 
such as dependency detection, vulnerability identification and license 
checking. On the other hand, frequent false positives and negatives 
lead to inaccurate security assessments, which in turn affect the overall 
quality and reliability of the software.

Although some studies compare the performance of SCA tools, most 
are limited to specific scenarios or single datasets, lacking systematic 
validation of multi-language compatibility, binary dependency detec-
tion and adversarial threats. Sharma et al. (2024) compared several 
popular SCA tools, but their evaluation mainly focused on vulnerability 
detection, failing to cover key functions like dependency management 
and license compliance. Similarly, Imtiaz et al. (2021) revealed dif-
ferences in vulnerability tracking and operational efficiency in their 
study of the large-scale OpenMRS Web application, but did not evaluate 
multi-language support or binary dependency detection.

These limitations are especially evident in multi-language ecosys-
tems. Zhao et al. (2023b) proposed a dependency resolution evaluation 
model that systematically revealed the SSM support deficiencies of 
SCA tools in the Maven ecosystem, but their findings do not gener-
alize well to other technology stacks like Python and C/C++. Jiang 
et al. (2024) demonstrated that code cloning and feature redundancy 
can lead to significant misjudgments in third-party library detection 
by traditional SCA tools in the C/C++ ecosystem, but such studies 
often focus on single-language optimization, lacking validation across 
ecosystems. Without a comprehensive evaluation, key performance 
dimensions remain unexplored, which may lead to overestimating tool 
effectiveness in real-world use.

Additionally, few studies have systematically evaluated the impact 
of adversarial operations on SCA tools, a critical aspect of modern 
software supply chain security. Dietrich et al. (2023) revealed the 
interference of code shadowing and cloning operations on tool ac-
curacy, but did not propose a quantitative adversarial testing frame-
work. Zhan et al. (2020) proposed an extensible evaluation framework 
for binary obfuscation scenarios, but failed to analyze the stability 
differences across various build forms. Neglecting any detection di-
mension, whether dependency, vulnerability, or license, may lead to 
tools that perform well in specific tests but fail in diverse and complex 
environments.

To address this gap, this study proposes a quantitative evaluation 
model that integrates three core functions: dependency detection, vul-
nerability identification and license recognition. It also covers three 
key scenarios: multi-language ecosystem compatibility, source and bi-
nary forms and adversarial threats (Wang et al., 2023). The model 
employs a quantitative indicator system based on recall, precision, F1-
score and standard deviation to assess performance. We evaluate four 
representative SCA tools using standardized datasets designed to reflect 
real-world complexity. Results reveal that, while these tools may per-
form adequately in controlled settings, they often fail to handle more 
demanding scenarios involving low-level and emerging languages, bi-
nary dependencies, adversarial threats, and license complexity. These 
findings highlight the gap between current capabilities and practical 
needs—suggesting that many SCA tools behave more like limited-use 
toys than reliable solutions when facing real-world software supply 
chain challenges. The study provides data-driven guidance for devel-
opers, users, and researchers seeking to improve tool robustness and 
applicability.

The main contributions of this paper are as follows:

1. This study proposes the first comprehensive evaluation model 
that integrates three core functions: dependency detection, vul-
nerability identification and license recognition. It covers multi-
language ecosystems, source and binary forms and adversarial 
threats, addressing the limitations of previous research focused 
on single function or ecosystem.
2 
2. We construct a standardized test suite encompassing Java
datasets, multi-language projects, diverse build methods, and 
adversarial scenarios. The datasets are derived from academic 
literature and leading open-source repositories over the past five 
years. All datasets and ground-truth lists are open-sourced to 
support reproducibility.1

3. Experiments on six datasets using four state-of-the-art tools, 
including RA, CleanSource, OpenSCA, and Snyk, this study iden-
tifies weaknesses in both commercial and open-source solutions 
and proposes targeted optimizations.

The organization of this paper is as follows: Section 2 provides 
an overview of the background and technical workflow of SCA tools. 
Section 3 outlines the methodology, including the evaluation model, 
research questions, datasets, tools, and evaluation metrics. Section 4 
presents the performance differences and limitations of the tools in 
dependency detection, vulnerability identification, license recognition 
and stability analysis. Section 5 discusses the findings from the ex-
perimental results and offers recommendations for tool developers, 
users and researchers. Section 6 addresses the threats to the validity of 
the experiments. Section 7 compares this study with existing research 
and reviews related work. Finally, Section 8 summarizes the research 
conclusions and implications for the industry.

2. Background

2.1. Terminology

Open Source Component: A software module or library released 
under an open-source license that permits anyone to use, modify 
and distribute it. These components are frequently integrated into 
projects during both development and operations (Open Source Initia-
tive, 2025).

Dependency: A reference from one software module or component 
to another. In OSS, dependencies can be direct, where one component 
immediately relies on another, or indirect, where a component depends 
on another that, in turn, relies on a third-party component.

Vulnerability: A flaw or weakness in software that attackers can 
exploit. Such vulnerabilities in open-source components may compro-
mise the security of an entire system, making their identification and 
management a key task for SCA tools.

License Compliance: The adherence to the terms set by OSS li-
censes, which define how the software may be used, modified and 
distributed. SCA tools help ensure that the open-source components 
in a project comply with these licensing terms, thereby reducing legal 
risks (Microsoft, 2025).

Binary Dependency: A runtime dependency on binary files, typ-
ically compiled code. Unlike source code dependencies, analyzing bi-
nary dependencies requires handling compiled files and libraries, which 
adds complexity to dependency resolution (Pei et al., 2022).

Multi-Language Dependency: Dependencies involving
components written in multiple programming languages, such as Java, 
Python, or C. These dependencies are typically resolved through sep-
arate language-specific package managers, rather than through cross-
language function calls (Yang et al., 2024).

Multi-Language Ecosystem: A software project composed of mul-
tiple programming languages and corresponding build or dependency 
management tools, such as Maven, npm, and pip. This evaluation 
dimension assesses whether SCA tools can consistently and accurately 
identify dependencies across diverse language ecosystems (Mayer et al., 
2017; Feng et al., 2024).

Adversarial Operations: Techniques that test the robustness and 
accuracy of SCA tools by simulating attacks. These methods, including 

1 The datasets and ground-truth lists are available at: https://github.com/
ErqiFang/Benchmarking-SCA-Tools.
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Fig. 1. SCA workflow.

code obfuscation and dynamic loading, aim to bypass detection mecha-
nisms and reveal potential weaknesses (Bacci et al., 2018; Wang et al., 
2023).

2.2. Overview of SCA

SCA is a key technique for identifying, tracking, and managing 
open-source components, third-party libraries (TPLs), and dependen-
cies in software projects (Imtiaz et al., 2021; Dann et al., 2021). 
SCA tools support this process by mapping software components and 
associated risks, such as security vulnerabilities, license conflicts, and 
outdated or redundant dependencies. They provide developers and 
security teams with data-driven insights for risk management and 
compliance decisions (Sharma et al., 2024).

From technical process perspective, the SCA tools execution pipeline 
consists of four stages (Ponta et al., 2018; Decan et al., 2019; Microsoft, 
2025; Wikipedia contributors, 2025b), as shown in Fig.  1. In the data 
collection stage, the tool scans the project’s source code repository, 
builds configuration files such as pom.xml and package.json and 
binary files in JAR or ELF format. In the dependency resolution
stage, the tool parses dependency declarations, builds tool configura-
tions and runtime environments to generate a complete dependency 
tree (Decan et al., 2019). In the risk matching stage, the parsed results 
are compared with vulnerability databases, license repositories and 
version compatibility rules to identify high-risk components. Finally, 
in the report generation stage, the tool produces a Software Bill of 
Materials (SBOM) (Sorocean et al., 2024; O’Donoghue et al., 2024), a 
list of vulnerabilities and compliance recommendations and formulates 
remediation strategies.

Existing studies primarily examine the functionality of SCA tools 
from a single perspective, such as dependency management (Zhao et al., 
2023b; Ombredanne, 2020; Jiang et al., 2023, 2024) or vulnerability 
detection (Kengo Oka, 2021; Imtiaz et al., 2021; Prana et al., 2021), 
without integrating multiple detection capabilities into a comprehen-
sive assessment. Moreover, evaluating license compliance is crucial for 
a comprehensive analysis of SCA tools (Ombredanne, 2020; Duan et al., 
2024).

The technical value of SCA tools is reflected in three dimensions:
dependency visualization and management, which involves con-
structing multilevel dependency topology maps to reveal direct and 
transitive dependencies, assisting in optimizing dependency versions or 
removing redundant components; security risk management, which 
enables vulnerability reachability analysis and impact assessment by 
correlating with vulnerability databases such as NVD and Snyk Intel; 
and compliance assurance, which involves parsing open-source li-
censes like Apache-2.0 and GPL-3.0 and detecting potential constraints 
of contagious licenses on commercial code.
3 
Fig. 2. Evaluation model.

Core functionalities, including dependency detection, vulnerabil-
ity identification, and license inspection, constitute the foundation 
of modern SCA tools. However, their effectiveness depends not only 
on functional accuracy but also on adaptability to challenging sce-
narios. Specifically, the ability to support key dimensions, including 
multi-language ecosystems, source and binary forms and adversarial 
threats, is essential for ensuring robustness and practical applicability 
in complex software supply chains.

Although SCA tools are essential for software supply chain security, 
their effectiveness is limited by challenges such as multi-language 
ecosystem, binary dependency parsing and adversarial threat. There-
fore, developing an evaluation framework that addresses multiple sce-
narios and systematically assesses these tools’ performance is crucial 
for advancing both technology and industry applications.

3. Study methodology

3.1. Evaluation model

The evaluation model provides a structured framework for assessing 
the performance of SCA tools across diverse scenarios. Building on prior 
criteria proposed in related studies (Zhan et al., 2020; Zhao et al., 
2023b, 2021), the model is structured around three core dimensions: 
evaluation perspectives, evaluation scope, and evaluation metrics, as 
illustrated in Fig.  2. It defines three key scenarios that SCA tools must 
address, and aligns them with the core functionalities. These elements 
together support a comprehensive and systematic evaluation of tool 
capabilities.

• Evaluation Perspectives focus on three core functions of SCA tools:
Dependency Detection, Vulnerability Identification, and License 
Inspection. Dependency detection evaluates the tool’s capability to 
accurately construct a SBOM, vulnerability identification assesses 
its effectiveness in detecting security risks, and license inspection 
examines its ability to manage legal risks associated with open-source 
licenses.

• Evaluation Scope consists of three key dimensions: Multi-Language 
Ecosystem, Source and Binary Form, and Adversarial Threat. 
These dimensions address practical challenges in software supply 
chains, including multi-language development, diverse build envi-
ronments, and adversarial attack techniques. The model integrates 
insights from development practices, technological diversity, and 
security threats to provide a comprehensive evaluation framework 
covering both routine detection and complex adversarial scenarios.

• Evaluation Metrics include Recall, Precision, F1-Score, and Stan-
dard Deviation to assess detection accuracy and robustness. Recall 
measures a tool’s ability to identify all existing vulnerabilities and 
dependencies, while precision indicates its effectiveness in minimiz-
ing false positives. F1-score provides a balanced metric of precision 
and recall. Additionally, standard deviation quantifies the variability 
of results under adversarial operations through repeated experiments, 
indicating the tool’s consistency under varying conditions.
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Fig. 3. The workflow of our study.

3.2. Workflow

Fig.  3 illustrates the workflow of our study, structured around the 
proposed evaluation model. We compile benchmark datasets from the 
past five years’ academic studies and official open-source repositories 
such as GitHub. These datasets cover multi-language projects, source 
and binary form, and adversarial threat scenarios. To ensure broad 
applicability and reflect diverse technical approaches, we include both 
commercial and open-source SCA tools, selecting four representative 
ones for evaluation.

Across multiple scenarios, we systematically test these tools by 
extracting ground-truth data from the datasets and computing relevant 
metrics. By comparing evaluation results across different scenarios, we 
identify limitations in dependency detection, vulnerability identifica-
tion, and license inspection. Based on these observations, we summa-
rize our findings and provide recommendations for tool developers, 
users, and researchers.

3.3. Research questions

This study evaluates the overall effectiveness of SCA tools, focusing 
on four key research questions (RQs) that examine their performance 
limits, particularly in core functions. The specific RQs are:

• RQ1: How effective are SCA tools in detecting dependencies? This 
question evaluates dependency detection from three perspectives:
multi-language ecosystem, build form and adversarial threats.

– For multi-language ecosystem, DS1 on the Java Maven database 
and DS4 on multi-language projects are used to compare how 
effectively the tools resolve Java and multi-language dependency 
chains.

– For build form, the differences in dependency resolution between 
source and binary code are evaluated by comparing the results 
of DS2 on binary files with those of DS1 and DS3-5 on source 
dependencies.

– For adversarial threats, false negative rates are measured for de-
pendency hijacking and code obfuscation using DS1 and DS3 for at-
tacks on Maven projects, and using DS4 and DS5 for multi-language 
obfuscation.

• RQ2: Can SCA tools effectively identify vulnerabilities in the 
supply chain attack scenarios? Due to incomplete vulnerability 
data and limited details in some datasets (Dietrich et al., 2023), this 
study uses DS3 to analyze attacks on Maven projects, testing the tools’ 
ability to detect known vulnerabilities across 11 adversarial scenarios.
4 
• RQ3: How well do SCA tools recognize licenses in complex licens-
ing scenarios? Using DS6 based on the SPDX license, we assess the 
tools’ ability to identify licenses with naming discrepancies, such as 
different versions and full names versus abbreviations like ‘‘GNU Gen-
eral Public License v2.0’’ and ‘‘GPL-2.0’’. Since regex-based methods 
struggle with these variations, a semi-automated process was used to 
evaluate 663 licenses.

• RQ4: How stable are SCA tools in different detection scenarios?
Dependency detection involves multi-language ecosystems, source 
and binary form and adversarial threat scenarios. Datasets DS1 to 
DS5 include large, well-annotated samples. We calculate the standard 
deviation (𝜎) of average recall, precision and F1-score across the 
datasets to assess the consistency of tool performance in complex 
software supply chain environments.

3.4. Tool selection

To ensure a balanced evaluation, we selected four representative 
SCA tools, based on differences in architecture, deployment, and adop-
tion across industry and academia. This selection includes both com-
mercial and open-source solutions, reflecting varied levels of technical 
maturity and usage contexts. RA is a commercial enterprise-grade tool 
with broad language support and strong detection capabilities. Snyk 
represents modern DevSecOps practices, offering risk-based vulnerabil-
ity scanning and wide integration in development pipelines  (Sushma 
et al., 2023). OpenSCA is an open-source project widely adopted in the 
Chinese security community, valued for its transparency, extensibility, 
and ecosystem coverage.

3.4.1. Tool 1: Commercial tool RA
RA, anonymized due to the request of its commercial provider, 

is an enterprise-grade SCA tool that supports dependency analysis, 
vulnerability detection and license compliance. Its strength lies in its 
comprehensive detection methods, which identify software components 
through dependency relationships, file structures, code snippets and 
binary signatures. RA generates detailed component inventories at 
the project and coordinate levels. Its broad language support and 
comprehensive features make it suitable for large-scale enterprise use.

3.4.2. Tool 2: Commercial tool CleanSource
CleanSource, developed by SecTrend, is known for its high detec-

tion accuracy and strong performance in adversarial scenarios, mak-
ing it suitable for complex enterprise-level security and compliance 
needs. It has been deployed by major tech companies such as Ten-
cent (Global TMT, 2025), reflecting its effectiveness in real-world. Its 
technical strengths include: (1) dependency tree visualization to map 
complex relationships; (2) high-precision vulnerability matching and 
risk assessment based on authoritative databases such as CVE and 
CNVD; (3) adaptive recognition algorithms for extracting component 
details, including versioning, licensing and encryption methods; (4) 
the ability to scan binary packages without requiring source code, 
enabling fast and passive analysis; and (5) license compatibility checks 
for open-source components.

3.4.3. Tool 3: Open-source tool OpenSCA
OpenSCA, the open-source version of Xmirror Security’s Xcheck 

SCA, is widely used in small and medium-sized projects. In this study, 
we use version v3. OpenSCA supports dependency analysis and vulnera-
bility detection for major programming languages such as Java, Python, 
PHP and Golang, integrating with the CVE database for basic vulnera-
bility scanning and component-level license identification. However, it 
lacks file-level license detection, has limited binary analysis capabilities 
and struggles with obfuscation or encryption scenarios, making it more 
suitable for less complex environments.
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Table 1
Dataset information and tags.
 ID Dataset description Source Tags  
 DS1 Classic Java Dependencies Zhao et al. (2023b) Dependency, Java  
 DS2 Binary Dependencies Zhan et al. (2020) Dependency, Binary  
 DS3 Maven Dependencies with Adversarial Modifications Ivanova et al. (2024) Dependency, Vulnerability, Java, Adversarial 
 DS4 Multi-Language Dependencies SourceClear (2025) Dependency, Multi-language  
 DS5 Multi-Language Dataset with Adversarial Modifications Wu et al. (2023) Dependency, Multi-language, Adversarial  
 DS6 License Dataset SPDX (2025) License  
3.4.4. Tool 4: Commercial tool Snyk
Snyk is a commercial SCA tool designed for vulnerability detection 

and remediation. It supports a wide range of programming languages 
and integrates with platforms such as GitHub to perform automated 
dependency scanning and continuous monitoring. Snyk prioritizes high-
impact vulnerabilities and provides actionable fix suggestions. In our 
experiments, we used version v1.1297.1 (Snyk Documentation, 2025; 
Snyk CLI Developers, 2025).

3.5. Dataset selection and construction

The basic information of the datasets is summarized in Table  1. The 
design logic, data sources and evaluation objectives are detailed below. 
Although all datasets are derived from benchmark-oriented scenarios, 
they are constructed based on patterns observed in real-world projects 
and threat reports. Each dataset is designed to reflect specific challenges 
faced by SCA tools in practice, including multi-language ecosystem, 
binary dependency, and attack defense.

3.5.1. Dataset 1 (DS1): Java dependency dataset
This dataset is based on the benchmark framework proposed by

Zhao et al. (2023b), designed to model the complexity of dependency 
management within the Java-Maven ecosystem. It includes Maven 
modules and their dependency topologies extracted from real Java 
projects, covering eight Maven Dependency Features (MDF) and three 
Maven Dependency Settings (MDS). MDF includes dependency man-
agement, parent inheritance, exclusion, profiles, optional dependencies, 
version ranges and variable-based versioning, while MDS includes de-
pendency type, classifier and scope. The dataset consists of 256 MDF 
combinations and 22 MDS instances, forming a standardized test set of 
259 experimental projects. Each project is annotated with ground-truth 
dependency lists to ensure reliable benchmarking.

3.5.2. Dataset 2 (DS2): Binary dependency dataset
To evaluate SCA tools’ ability to detect OSS reuse in binary form, 

this study uses a dataset from Zhan et al. (2020) consisting of 35 
complex executables generated from GCC, Clang and MSVC. It includes 
24 Linux ELF files (10 from Clang) and 11 Windows PE files from 
MSVC, covering more than one million assembly functions and 55 
million lines of C/C++ code. These binaries, derived from large-scale 
applications such as physics engines and payment protocols, reflect 
real-world production complexity.

3.5.3. Dataset 3 (DS3): Java adversarial dataset
To test the robustness of SCA tools against supply chain attacks, 

the study uses an adversarial Maven POM dataset from Ivanova et al. 
(2024). This dataset includes 29 high-profile vulnerable dependencies 
sourced from the Maven Central Repository and simulates attack sce-
narios by modifying manifest characteristics, bundling methods and 
dependency configurations. It consists of 13 Maven projects, including 
11 adversarial cases and 2 baselines used for comparative analysis.

To better reflect real-world threats, each scenario is mapped to 
establish software supply chain attack taxonomies (Ladisa et al., 2023; 
Ohm et al., 2020). Specifically, Scenarios 1–5 emulate metadata-level 
obfuscation techniques such as variable-based versioning, profile-
activated dependencies, and parent–child inheritance. These mimic 
subtle configuration-based evasions that hinder accurate dependency 
5 
resolution. Scenarios 6–9 simulate build-stage attacks by modifying 
Uber-JAR artifacts, including the use of shaded packages, stripped 
metadata, or forged manifest files, resembling techniques found in the 
SolarWinds incident  (Martínez and Durán, 2021). Scenarios 10–11 
reflect dependency confusion attacks, in which misleading group IDs 
and tampered versions are introduced through manual installation, 
representing typosquatting and hijacking behaviors commonly reported 
in open ecosystems. 

3.5.4. Dataset 4 (DS4): Multi-language dataset
To assess SCA tools’ compatibility and accuracy in multi-language 

projects, the study adopts the ‘‘Evaluation Framework for Depen-
dency Analysis’’ (EFDA) dataset from SourceClear (SourceClear, 2025). 
This dataset spans 10 major programming languages, including Java, 
JavaScript, Python and Golang and integrates heterogeneous build 
systems such as Maven, npm, pip and Go Modules. It simulates real-
world development environments with multi-language dependency 
chains and standardized ground-truth annotations.

3.5.5. Dataset 5 (DS5): Adversarial multi-language dependency dataset
To test SCA tools’ ability to handle obfuscated dependencies in 

multi-language scenarios, the study uses a dataset from Wu et al. 
(2023), covering Python, Ruby, PHP, Java, Rust, Golang and
JavaScript. C/C++ projects were excluded due to limited support in ex-
isting SBOM tools, which could introduce evaluation bias. The dataset 
introduces parser-level ambiguity by injecting non-standard syntax 
into files such as Python’s requirements.txt, intentionally exploiting 
inconsistencies among language-specific dependency parsers to disrupt 
accurate resolution.

Beyond dependency obfuscation, DS5 also models the complexity of 
vulnerability propagation in real-world software supply chains. The de-
sign captures practical issues including how vulnerabilities are reached, 
the difficulty of triggering them, and the downstream responses of 
dependent projects. It reflects risks from deeply nested call chains, 
vulnerabilities requiring multi-layered triggering logic, and vulnerable 
functions invoked without sufficient validation or control. Addition-
ally, it includes cases of misconfigured dependency management, such 
as version pinning failures and hidden profiles. These characteristics 
mirror the patterns of latent propagation risk and supply chain failure 
observed in recent incident analyses, such as those reported in  Ladisa 
et al. (2023), and help reveal the limitations of existing SCA tools in 
identifying and mitigating such threats.

3.5.6. Dataset 6 (DS6): License benchmark
For license detection evaluation, the study employs a dataset based 

on the Software Package Data Exchange (SPDX) standard, which in-
cludes 663 licenses with detailed metadata and versioning informa-
tion (SPDX, 2025). Provided in RDFa, HTML, Text and JSON formats, 
the dataset enables the evaluation of tools’ ability to recognize common 
licenses and resolve versioning discrepancies.

3.6. Metric setup

To evaluate the performance of SCA tools across environments, 
we use three key metrics: recall for detection coverage, precision
for result reliability and standard deviation for consistency across 
scenarios.
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In the experimental design, ground-truth serves as the baseline, 
transforming detection tasks into binary classification problems. Each 
dataset directory records four key values: matches, representing cor-
rect detections where predictions align with the ground-truth; misses, 
indicating ground-truth elements that the tool failed to detect; extras, 
referring to incorrect predictions not present in the ground-truth; and
truths, denoting the total number of ground-truth elements. These 
values form the basis for computing recall, precision and standard 
deviation. The methodology includes the following steps:

1. Dynamic data definition: Positive labels, including dependency 
names, vulnerability identifiers and license IDs, are defined by 
the dataset’s objectives.

2. Confusion matrix analysis: Performance is evaluated using a 
confusion matrix with True Positives (TP), False Positives (FP), 
True Negatives (TN) and False Negatives (FN).

3. Cross-dataset comparison: Tools’ performance is tested across 
different datasets, including adversarial and regular scenarios, to 
evaluate generalization in diverse environments.

Recall, precision, and F1-score quantify detection effectiveness, 
balancing coverage and false positive control:

• Recall is the proportion of true positives among all actual pos-
itives, reflecting the tool’s ability to detect dependencies or vul-
nerabilities. Higher recall indicates fewer missed detections: 

𝐑𝐞𝐜𝐚𝐥𝐥 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

. (1)

• Precision measures the proportion of true positives among all 
predicted positives, reflecting the accuracy of detection results. 
Higher precision reduces false positives, which is critical in ad-
versarial scenarios: 
𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. (2)

• F1-score is the harmonic mean of precision and recall, provid-
ing a single metric that balances both aspects. It is particularly 
useful when evaluating performance under class imbalance or 
adversarial conditions: 
𝐅𝟏 = 2 ⋅ Precision ⋅ Recall

Precision + Recall . (3)

To evaluate stability, the standard deviation of recall and precision 
across datasets is calculated as: 

𝝈 =

√

∑𝑛
𝑖=1(𝑥𝑖 − 𝑥)2

𝑛
, (4)

where 𝜎 is the standard deviation, 𝑥𝑖 is the value for each dataset, 𝑥
is the average value, and 𝑛 is the number of datasets. A smaller stan-
dard deviation indicates more consistent performance across different 
scenarios, reflecting the robustness of the tools.

4. Empirical study

4.1. RQ1: How effective are SCA tools in detecting dependencies?

To evaluate the performance of SCA tools across diverse depen-
dency scenarios, this study uses datasets covering programming lan-
guages, dependency types, and adversarial conditions. The evaluation 
framework examines three key dimensions: multi-language ecosystem 
compatibility, build form compatibility and robustness to adversarial 
threats.

• Multi-Language Ecosystem Dimension focuses on the ability 
of tools to handle multi-language ecosystems, including Java, 
Python, and JavaScript, reflecting the increasing use of multi-
language frameworks in modern development. This dimension 
examines whether SCA tools can overcome single-language limi-
tations and accurately detect dependencies across complex, multi-
stack systems.
6 
• Build Form Dimension considers two types of dependencies: 
source-level and binary-level. The former refers to structured 
dependencies declared during development, while the latter in-
volves implicit runtime dependencies of compiled artifacts. The 
former relies on syntax analysis and semantic reasoning, while 
the latter requires reverse engineering and symbolic matching. 
Together, they form a complete dependency map of the software 
supply chain.

• Adversarial Threat Dimension evaluates the tools’ robustness to 
supply chain attacks and multi-language attacks. These scenarios 
simulate real-world tactics such as code obfuscation and syntactic 
manipulation.

Experimental results indicate substantial performance variations 
across datasets. Table  2 shows the average number of ground-truths, 
matches, misses, extras and the average recall, precision and F1-score 
for each tool across 5 dependency datasets.

4.1.1. Multi-language ecosystem
To assess the generality and robustness of SCA tools in multi-

language environments, this study compares deep single-language 
support using DS1, which follows Java Maven standards, with broad 
multi-language coverage using DS4, which includes 10 languages 
such as Java, Python, and C/C++. The number of ground-truth files 
in each dataset and the number of files each tool successfully scanned 
are shown in Table  3.

For DS1, Snyk and OpenSCA show the best performance with high 
recall and precision, followed by RA with moderate results. Snyk 
achieves the highest F1-score, demonstrating strong accuracy and low 
false positives in detecting Java dependencies. OpenSCA also performs 
well, with a recall of 74.86% and precision of 99.84%. RA achieves 
65.76% recall and 82.58% precision but fails to detect certain files, 
possibly due to complex Maven dependency features or MDS projects 
exceeding its detection scope. CleanSource scans all files but shows very 
low recall, averaging only three correct matches per file compared to 
41 ground-truth values.

DS4, which includes ten programming languages, reveals further 
differences among tools, as shown in Fig.  4. RA identifies dependencies 
in eight languages, missing only Scala and C#. Snyk supports seven lan-
guages and is the only tool capable of detecting dependencies in Scala 
and C#, though it fails to handle C, Objective-C, and Ruby. None of the 
tools cover all ten languages. OpenSCA performs best in Python and 
Ruby, with consistently high recall and precision, and shows moderate 
results in Java, Golang, JavaScript, and PHP. However, its performance 
drops sharply in C and Objective-C, where both recall and precision are 
near zero. RA achieves strong recall in Objective-C, Golang, Java, and 
JavaScript, but its precision is highly variable, remaining low in PHP 
and C. CleanSource demonstrates limited multi-language capabilities, 
performing relatively well only in Objective-C and Python. It fails to 
detect dependencies in Java, Ruby, or C, and its results in Golang, PHP, 
and JavaScript are inconsistent. Snyk achieves the highest recall across 
most languages, reflecting strong multi-language coverage, yet its lower 
precision results in only moderate F1.

    

Finding 1: Existing SCA tools exhibit clear differences in multi-
language ecosystem. While detection techniques are mature for 
traditional environments like Java, they remain weak for emerg-
ing languages like Go and low-level languages like C and C++, 
highlighting the challenge of achieving compatibility in multi-
language dependency analysis.

4.1.2. Build form
The diversity of software build patterns imposes distinct technical 

adaptation requirements on component analysis tools. From a full 
lifecycle perspective, dependency detection can be categorized into two 
types: source-level explicit dependencies and binary-level implicit 
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Table 2
Average dependency detection performance of five datasets.
 Tool Dataset Matches Misses Extras Truths Recall (%) Precision (%) F1 (%) 
 

RA

DS1 24.00 17.18 5.97 41.18 65.76 82.58 70.84  
 DS2 0.56 6.06 1.81 6.63 7.21 24.22 10.46  
 DS3 51.00 15.00 53.63 66.00 77.58 54.84 62.60  
 DS4 3.33 0.72 19.62 4.05 74.48 36.42 42.63  
 DS5 6.00 33.50 20.25 39.50 19.65 44.41 25.02  
 

CleanSource

DS1 3.01 37.95 1.02 40.97 8.52 73.99 15.01  
 DS2 0.74 7.04 1.96 7.78 9.37 28.41 12.62  
 DS3 22.33 43.00 23.11 65.33 34.16 52.77 38.84  
 DS4 1.96 2.30 14.78 4.26 32.96 22.71 24.13  
 DS5 2.40 110.60 2.00 113.00 9.43 36.33 14.26  
 

OpenSCA

DS1 28.13 12.83 0.08 40.97 74.86 99.84 84.68  
 DS2 / / / / / / /  
 DS3 44.50 20.80 10.30 65.80 68.02 70.40 68.42  
 DS4 3.86 0.82 20.14 4.68 85.25 48.12 49.82  
 DS5 15.00 83.43 1.86 98.43 33.38 66.69 40.96  
 

Snyk

DS1 29.88 11.09 0.13 40.97 81.21 99.80 88.34  
 DS2 / / / / / / /  
 DS3 39.30 26.00 2.90 65.30 60.00 56.96 58.43  
 DS4 2.86 0.45 22.77 3.83 86.84 23.14 32.52  
 DS5 15.17 81.50 4.17 96.67 32.54 49.62 37.95  
Note: All metrics are reported as the average values computed across different files within the same dataset.
Fig. 4. Tool performance on DS4 in multi-language analysis.
Table 3
Number of files effectively scanned by tools (Total per dataset in parentheses).
 Tool DS1(258) DS2(32) DS3(10) DS4(54) DS5(12) 
 RA 131 32 8 40 4  
 CleanSource 258 23 9 27 5  
 OpenSCA 258 / 10 29 7  
 Snyk 258 / 10 22 6  
7 
dependencies. Source-level detection is evaluated using DS1, DS3-5 to 
assess the ability to parse structured dependency declarations. Binary-
level detection is tested with DS2 (binary files compiled with gcc, clang 
and MSVC) to evaluate the ability to trace dependencies without source 
code.

Fig.  5 illustrates the overall performance of the four tools across the 
five datasets, where areas enclosed by the same color block represent 
the same dataset. A comparison between the red and other colored 
regions reveals significant differences in handling source-level and 
binary-level dependencies. In source-level scenarios, the tools achieve 
an average recall of 48.7%, and an average precision of 57.4% (with 
OpenSCA reaching 99.84%), indicating strong capability in managing 
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Fig. 5. Performance of tools across DS1-5.  (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

Table 4
Tools’ dependency detection in attack scenarios on DS3.
 Attack scenarios RA CleanSource OpenSCA Snyk 
 0-baseline1 ✓ ✓ ✓ ✓  
 0-baseline2 / / / /  
 1-version-variable ✓ ✓ ✓ ✓  
 2-dependency-management ✓ ✓ ✓ ✓  
 3-profiles × ✓ ✓ ✓  
 4-parent–child-version-variable ✓ ◦ ✓ ✓  
 5-parent–child-groupid-variable × × ✓ ✓  
 6-uber-jar ✓ ✓ ✓ ◦  
 7-shaded-uber-jar ✓ ✓ ✓ ◦  
 8-bare-uber-jar ✓ ◦ ◦ ◦  
 9-uber-jar-modified-metadata ✓ ✓ ◦ ◦  
 10-manual-install-modified-groupid / / / /  
 11-manual-install-wrong-version / / / /  
1 Baseline 1 is utilized for comparison with manifest-related and bundling attacks.
2 Baseline 2 serves as a reference for comparison with dependency modification attacks.
Symbols: ✓ = correct identification; × = identification failure; ◦ = report generated, 
all matches fail; / = no ground-truth data.

explicit dependencies. However, in binary-level scenarios, the average 
recall drops sharply to 8.7% (RA: 7.21%, CleanSource: 9.37%) with pre-
cision falling below 30%. Notably, OpenSCA and Snyk lack binary-level 
detection capabilities entirely.

    

Finding 2: SCA tools show significantly weaker performance
on binary datasets compared to source code scenarios, highlight-
ing limitations in handling source and binary forms. Some tools 
are unable to detect any binary dependencies at all, exposing 
a critical blind spot. This gap in binary-level build detection 
limits comprehensive security across the software supply chain 
lifecycle.

4.1.3. Adversarial threat
This study evaluates the robustness of SCA tools in threat detection 

using two adversarial datasets: basic supply chain attacks (DS3) and
complex multi-language adversarial scenarios (DS5). DS3 simulates 
traditional dependency hijacking in Maven projects, while DS5 tests 
multi-language dependency confusion. These datasets assess the tools’ 
defense capabilities and ecosystem adaptability.

Table  4 and Fig.  6 present the tools’ performance boundaries, in-
cluding recall and precision, under different attack scenarios in DS3. 
The ‘‘✓’’ indicates that the tools can effectively identify and generate 
prediction reports. In the basic attack scenario, OpenSCA demonstrates 
strong defense, with a recall of 68.02% and precision of 70.40%, though 
it fails under complex build attacks involving bare uber-jar files. In con-
trast, RA, CleanSource, and Snyk exhibit varying degrees of weakness. 
RA achieves the highest recall at 77.58% but suffers a precision drop to 
d

8 
Fig. 6. Tools’ dependency detection in DS3 attack scenarios.

33.56% under parent–child variable substitution, indicating difficulty 
in resolving modified dependency structures. CleanSource shows severe 
instability, with recall fluctuating from 9.3% to 93.1% and a low F1 
score of 38.84%, reflecting poor robustness against structural attacks. 
Snyk maintains moderate yet stable performance, with an F1 score of 
58.43%. It handles basic and multi-module cases adequately, but fails 
to match any predictions under uber-jar and metadata manipulation 
scenarios, revealing clear limitations in build-stage obfuscation defense.

The complex multi-language adversarial scenario on DS5 (as shown 
in Fig.  7) further amplified performance gaps among tools. All tools 
struggled with adversarial operations involving Ruby and Rust. Open-
SCA maintained high accuracy in certain PHP, Golang and Java sce-
narios but showed a sharp decline in Python and JavaScript compared 
to DS3. RA’s overall performance was weaker, with reliable detection 
only in Golang, Java and Python, while performance in PHP, Ruby and 
JavaScript deteriorated significantly. CleanSource performed moder-
ately, successfully identifying some obfuscated dependencies in Golang, 
Java, JavaScript and Python, but with limited consistency. Its detection 
capability in Python, PHP and JavaScript dropped significantly under 
complex adversarial conditions. Snyk exhibited strong detection in 
Golang, achieving high F1 scores, but performed poorly in JavaScript 
where key metrics approached zero.

    

Finding 3: Existing SCA tools exhibit limited resilience and
poor adaptability to adversarial threats. They struggle to handle 
bundling modification attacks and multi-language obfuscation, 
revealing critical gaps in attack surface coverage and inconsis-
tencies in semantic analysis.

.2. RQ2: Can SCA tools effectively identify vulnerabilities in supply chain 
ttack scenarios?

In software security, the vulnerability identification capability of 
CA tools is essential. This study evaluates the vulnerability and de-
endency identification performance of RA, CleanSource, OpenSCA 
nd Snyk using DS3. The assessment covers both simple baseline 
cenarios, such as standard dependency injection and complex ad-
ersarial scenarios, such as Uber-JAR metadata tampering. Table  5 
resents the tools’ vulnerability identification performance, including 
ecall and precision for both vulnerability and vulnerable dependency 
dentification. Table  6 illustrates the tools’ performance limits across 
ifferent attack scenarios.
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Fig. 7. Tool performance on DS5 in multi-language analysis.
Table 5
Vulnerability and affected dependency detection performance (Average Across Datasets).
 Tool Vul.Rec (%) Vul.Prec (%) Vul.F1 (%) Vul.Dep.Rec (%) Vul.Dep.Prec (%) Vul.Dep.F1 (%) 
 RA 62.12 21.59 30.94 88.40 53.92 66.15  
 OpenSCA 24.25 24.46 24.04 62.86 31.27 41.26  
 CleanSource 34.59 43.74 38.09 56.90 68.10 61.10  
 Snyk 23.47 16.16 18.45 87.07 65.55 74.42  
Table 6
Vulnerability identification of SCA tools in DS3 attack scenarios.
 Attack scenarios RA CleanSource OpenSCA Snyk 
 0-baseline1 ✓ × ✓ ✓  
 0-baseline2 ✓ ✓ ✓ ✓  
 1-version-variable ✓ × ✓ ✓  
 2-dependency-management ✓ × ✓ ✓  
 3-profiles × × ✓ ✓  
 4-parent–child-version-variable ✓ × ✓ ✓  
 5-parent–child-groupid-variable × × ✓ ✓  
 6-uber-jar ✓ ✓ ✓ ×  
 7-shaded-uber-jar ✓ ✓ ✓ ×  
 8-bare-uber-jar ✓ × ◦ ×  
 9-uber-jar-modified-metadata ✓ ◦ ◦ ×  
 10-manual-install-modified-groupid ✓ ✓ ✓ ×  
 11-manual-install-wrong-version ✓ ✓ ✓ ◦  
1 Baseline 1 is utilized for comparison with manifest-related and bundling attacks.
2 Baseline 2 serves as a reference for comparison with dependency modification attacks.
Symbols: ✓ = correct identification; × = identification failure; ◦ = report generated, 
all matches fail; / = no ground-truth data.

RA demonstrates solid overall performance, with a vulnerability re-
call of 62.12%, indicating good coverage in identifying vulnerabilities. 
It handles most adversarial scenarios in DS3, failing only in a few cases 
such as profiles and parent–child group ID variation. For vulnerable 
dependency identification, RA performs well, achieving an F1 score of 
66.15%, though its low precision of 21.59%.
9 
CleanSource favors precision over recall, achieving the highest vul-
nerability precision at 43.74% and an F1 score of 38.09%. However, 
its scenario coverage is limited, performing effectively in only five 
scenarios (including one baseline), and failing completely in complex 
cases involving version variable parsing and dependency management 
configuration tampering.

OpenSCA shows balanced but limited performance. Its vulnerability 
recall and precision remain low, around 24%, and it fails in specific 
bundling attacks such as bare Uber-JAR and metadata modification, 
where it generates reports without correct matches. Nevertheless, it 
handles a wide range of scenarios stably, detecting attacks in 11 out 
of 13 DS3 cases.

Snyk shows the weakest performance in vulnerability identification, 
with a recall of 23.47%, precision of 16.16%, and an F1 score of just 
18.45%. However, it performs best in detecting vulnerable dependen-
cies, achieving the highest F1 score of 74.42%. While Snyk identifies 
early-stage attacks such as baseline and version variation effectively, 
it fails in build-stage and manual installation scenarios. These results 
indicate strong dependency-level detection but limited capability in 
mapping vulnerabilities to specific identifiers, reducing its adaptability 
to complex attack patterns.

Through systematic mapping of each tool’s vulnerability reports 
to the NVD database and extraction of corresponding CWE entries, 
we found that the top five most frequently detected CWE types are 
highly consistent across tools, including CWE-502, CWE-400, CWE-770, 
CWE-787, and CWE-20.
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Table 7
License recognition performance of tools.
 Average per-sample true value Global dataset
 Matches Misses Extras Recall Precision F1 Matches Misses Extras Recall Precision F1  
 RA 0.75 0.26 0.61 65.04% 64.83% 64.90% 179.00 484.00 202.00 27.00% 46.98% 34.29% 
 CleanSource 0.47 0.53 0.56 45.56% 45.56% 45.56% 23.00 640.00 7.00 3.47% 76.67% 6.64%  
Fig. 8. Performance of tools in license recognition.
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Finding 4: The vulnerability detection performance of SCA tools 
is highly variable, often showing high false positive rates and
poor adaptability to complex scenarios. This reflects a trade-
off in traditional detection methods between precision and cov-
erage, as well as limitations in handling attacks like bundling 
modifications and manifest features changes.

4.3. RQ3: How well do SCA tools recognize licenses in complex licensing 
scenarios?

The diversity of open-source licenses and the complexity of 
license expressions, including the mixed use of full names and abbre-
viations, present key challenges for SCA tools in license recognizing. 
This study evaluates the license identification and matching perfor-
mance of SCA tools using DS6, the SPDX standardized license list, 
which includes 663 licenses. The analysis focuses on the semantic pars-
ing accuracy (precision) and the coverage (recall). Since other datasets 
lack standardized ground-truth, SPDX serves as the only quantifiable 
benchmark.

Technical limitations cause OpenSCA and Snyk to fail entirely, 
generating no valid predictions. This indicates their dependency-based 
matching mechanism is incompatible with SPDX’s file-level detection. 
The license recognition results for RA and CleanSource are in Table 
7, where ‘‘Average Per-Sample True Value’’ denotes the single license 
prediction and ‘‘Global Dataset’’ refers to the entire dataset. Fig.  8 
shows the success-failure match ratio reported by RA and CleanSource.

RA exhibited mixed performance, combining high per-sample ac-
curacy with low global coverage. At the individual license level, it 
achieved over 65% precision and recall, averaging 0.75 matches per 
license. However, at the global level, it matched only 179 licenses (27% 
recall) with a 73% false negative rate. RA generated 202 predictions, 
exceeding the number of valid matches, indicating systematic blind 
spots for certain licenses.

In contrast, CleanSource showed more pronounced limitations. Its 
global recall was below 7%, leaving 93.21% of licenses unidentified. 
Even in successful cases, its precision reached 76.67%, averaging only 
0.47 matches per license. The low recall and high rate of missed 
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Table 8
Standard deviation of dependency recall, precision, and F1 across datasets.
 Tool Recall (%) Precision (%) F1 (%) 
 RA 29.51 19.77 22.53  
 OpenSCA 19.47 18.53 16.90  
 CleanSource 11.99 18.57 9.79  
 Snyk 21.32 27.53 21.89  

detections suggest that CleanSource’s algorithm struggles to handle 
complex license patterns.

    

Finding 5: SCA tools have limitations in license recognition. 
These gaps underscore the systemic limitations of traditional 
methods in handling expression diversity (e.g., "GPL-2.0-
only" vs. "GNU GPL v2") and version granularity (e.g., "Apache-
2.0" vs. "Apache-1.1").

.4. RQ4: How stable are SCA tools in different detection scenarios?

The stability of SCA tools directly impacts their reliability and 
eployment feasibility across various environments. Dependency detec-
ion involves multiple language, source and binary form and adversarial 
hreat, increasing its complexity. Using DS1–5, this study evaluates 
tability based on the consistency of dependency detection results. The 
tandard deviation (𝜎) of the average recall, precision and F1 across 
atasets is calculated for each tool as a measure of stability. The 
xperimental results are shown in Table  8.
RA indicates unstable performance across datasets, with standard 

eviations of 29.51% in recall, 19.77% in precision, and 22.53% in 
1. OpenSCA is more consistent but still fluctuates, with deviations of 
9.47% in recall, 18.53% in precision, and 16.90% in F1. CleanSource 
emonstrates the most stable performance, particularly in F1 with a 
eviation of only 9.79%. Snyk shows high inconsistency overall, with 
recision varying by 27.53%, and substantial fluctuations in recall and 
1, at 21.32% and 21.89% respectively.
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Finding 6: SCA tools show poor consistency across datasets, 
especially in recall and F1. Tools with broader coverage tend 
to be less stable, exposing a trade-off between coverage and 
consistency.

5. Discussion and implication

5.1. Discussion

Empirical findings reveal significant capability gaps and adapta-
tion challenges in existing SCA tools. While some tools perform well in 
controlled, source-level scenarios, they struggle in multi-language, bi-
nary, and adversarial contexts. Performance declines sharply in binary 
scenarios, as shown in DS2, due to algorithmic limitations in ad-
dressing compilation optimizations and dependency obfuscation. More-
over, SCA tools exhibit weak resistance to advanced threats, such as 
post-compilation attacks and multi-language obfuscation techniques, as 
shown through comparative analysis on DS1 and DS3, DS4 and DS5.

SCA tools struggle to detect metadata poisoning and obfuscated 
dependency relationships, consistent with past security failures. Our 
attack modeling in DS3 and DS5 reflects realistic supply chain threats 
based on established scenarios. DS3 focuses on build-stage and
metadata-layer vulnerabilities, including configuration obfuscation and 
tampered binary artifacts. It draws on real-world cases such as the 
SolarWinds incident (Martínez and Durán, 2021), where compromised 
build outputs evaded standard scanning, and on typosquatting and 
metadata manipulation attacks reported in earlier studies (Ohm et al., 
2020). DS5 models downstream risks caused by structural propaga-
tion of vulnerabilities and misconfigured dependencies, rather than 
direct attacks. Aligned with prior software supply chain attack tax-
onomies (Ladisa et al., 2023), these datasets go beyond synthetic 
constructs to replicate the ambiguity and complexity encountered in 
actual ecosystems. The reduced precision and recall in these scenarios 
highlight the difficulty of detecting complex threats across metadata, 
artifacts, and runtime layers.

Vulnerability detection remains inconsistent, with high false posi-
tives and poor handling of bundling changes and manifest modifica-
tions. Similarly, license detection struggles with expression differences 
and version details. The challenge of balancing detection breadth and 
stability remains unresolved. Broader coverage often leads to greater 
variation in recall and precision, making it difficult to achieve both 
sensitivity and consistency.

These results suggest that current SCA tools may function as ef-
fective tools in well-structured, single-language, source-level environ-
ments, where dependency information is explicit and standardized. 
However, in more realistic and challenging scenarios involving binary 
artifacts, multi-language architectures, and adversarial threats, they fail 
to maintain accuracy, coverage, and stability, acting more like toys that 
lack reliable and comprehensive results.

Overall, existing SCA tools have yet to balance precision, coverage
and robustness. These issues show systemic weaknesses in managing
heterogeneous build forms, multiple adversarial threats and deep 
multi-language semantic analysis, limiting their ability to address 
complex software supply chain risks effectively.

5.2. Implication

5.2.1. For evaluated SCA tool developers
Our evaluation reveals distinct capability gaps in each SCA tool 

when applied to multi-language, binary form, and adversarial scenar-
ios. Addressing these limitations is essential to enhance their reliability 
in practical software supply chain environments.

OpenSCA lacks binary analysis capabilities and struggles with li-
cense recognition. As shown in Sections 3.4 and 4.1, it fails to detect 
any dependencies in the binary dataset DS2, and performs poorly on 
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DS6, where embedded or non-standard license texts are missed. To 
improve, OpenSCA should integrate binary fingerprinting for compiled 
artifact analysis and adopt SPDX-based license parsing with semantic 
normalization.

Snyk shows limited support for binary and license-level detec-
tion, and performs inconsistently under adversarial conditions. It re-
lies solely on manifest-based scanning, leading to zero detection in 
DS2. In DS3 and DS5, recall and precision drop sharply (Section 4.1), 
and standard deviation increases across metrics (Section 4.4). Snyk 
should extend its scope to binary and container artifacts, strengthen re-
silience to obfuscation, and stabilize results through iterative validation 
mechanisms.

CleanSource achieves high precision but consistently lower re-
call, particularly in multi-language and adversarial datasets (Table 
2). Its conservative detection strategy avoids false positives but over-
looks valid dependencies. Adopting fuzzy matching and feature-tolerant 
analysis could help capture implicit or partially modified components.

RA provides accurate results but suffers from limited scanning cov-
erage. In DS1, it scans significantly fewer files than other tools (Table 
3), due to strict assumptions about project structure (Section 4.2). To 
improve coverage, RA should relax layout constraints and implement 
dynamic project boundary inference for broader applicability.

5.2.2. General recommendations for SCA tool developers
Beyond tool-specific issues, our findings highlight common lim-

itations in existing SCA tools, especially in handling non-standard 
scenarios such as binary dependency. Compilation optimizations often 
obscure dependencies, leading to reduced recall and precision. Ad-
dressing these challenges and expanding support for diverse compilers 
and platforms like GCC, Clang, and MSVC are essential for improving 
dependency tracing in source-less environments.

Improving multi-language support is equally important. As multi-
language projects are becoming more common, SCA tools need bet-
ter handling of diverse programming languages. Flexible dependency 
resolution algorithms that support heterogeneous build systems like 
Maven, npm and pip would enhance the resolution of multi-language 
dependency chains, aligning with contemporary hybrid software devel-
opment.

Optimizing license detection is another critical need. Existing SCA 
tools struggle to identify complex license patterns and distinguish 
between different license versions. Developers should refine license 
detection algorithms to improve accuracy and coverage.

Promoting standardization among SCA tools is crucial. Incon-
sistent license names and versions in SCA reports hinder cross-tool 
comparison. Establishing unified reporting standards would improve 
interoperability and consistency across different tools.

Finally, deeper integration of SCA tools into the development 
lifecycle should be prioritized. Developing plugins for real-time scan-
ning and automated triggering mechanisms could enable immediate 
detection and risk alerts, strengthening supply chain security.

5.2.3. For SCA tool users
Selecting the appropriate SCA tool depends on specific project 

requirements since tools differ in functionality, language support and 
detection accuracy. For Java-based projects requiring high detection ac-
curacy, OpenSCA is likely the best option. For multi-language projects, 
RA’s broad coverage makes it a viable choice despite its varying perfor-
mance across languages. For enterprise-level projects involving binary 
files, RA and CleanSource may offer a more effective solution. Addi-
tionally, combining multiple tools and manual review can further 
enhance project compliance and improve overall detection accuracy.
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5.2.4. For researchers
Develop a more comprehensive evaluation framework for SCA 

tools, as current research mainly focuses on specific scenarios or single 
datasets. A broader framework should assess tool performance across 
diverse programming languages and build environments. Moreover, 
exploring advanced detection techniques is essential, as traditional 
SCA methods may face challenges with future threats. Using AI or 
machine learning can improve dependency detection and help identify 
complex attacks by uncovering deeper patterns. Monitoring supply 
chain attack trends and developing targeted defense strategies are also 
crucial.

6. Threats to validity

6.1. Internal validity

Subjectivity in data processing may introduce bias. Construct-
ing ground-truth sets and prediction reports typically requires man-
ual intervention. For instance, when ground-truth information is dis-
tributed across README files and documentation, data must be col-
lected using a web crawler and manually organized into standard-
ized reports. Similarly, processing tool outputs such as JSON or CSV, 
requires manually extracting key fields and defining uniform rules 
for dependency name normalization and versioning removal. Despite 
employing a semi-automated process to handle 663 licenses, which 
consumed approximately 50 h, potential errors remain.

Configuration differences across tools may also affect the repli-
cability of results. Since configuration parameters affect detection per-
formance, this study uses default settings to reduce variability.

6.2. External validity

Selection bias in dataset choice may affect the generalizability 
of the results. While this study uses six distinct datasets covering Java 
projects, binary files, multi-language projects and adversarial threats, 
these datasets may not fully capture the diversity of real-world software 
projects.

Temporal factors may also affect the validity of the findings. 
Since SCA tools’ vulnerability databases and detection algorithms are 
continuously updated, the results reflect the tools’ performance at a 
specific point in time. Subsequent improvements could render some 
conclusions outdated.

Finally, excluding failed scans during data collection may
weaken result validity. Projects that failed to be successfully scanned 
were excluded from the study, which may introduce inconsistency 
in tool evaluation across the same dataset and weaken the overall 
reliability of the findings.

6.3. Construct validity

Limitations in evaluation metrics may restrict a comprehensive 
assessment of tool performance. This study primarily uses recall, preci-
sion, and standard deviation to evaluate performance. While these met-
rics capture core aspects, they may overlook factors such as usability, 
runtime efficiency and integration with development workflows.

Furthermore, limited tool representation may reduce the general-
izability of the findings. The study evaluates only RA, CleanSource and 
OpenSCA, which are representative within the commercial and open-
source domains. However, excluding widely used tools like Black Duck 
may limit the results’ applicability to other SCA tools.
12 
6.4. Conclusion validity

The limitations of the experimental design may restrict the ap-
plicability of the conclusions. Although the study tests the robustness 
of SCA tools against supply chain attacks using adversarial datasets, 
these operations may not capture the full complexity of real-world 
attacks, limiting the practical relevance of the findings. Moreover, 
while the study includes multi-language datasets, limited support for 
languages like C/C++ and Objective-C may affect the accuracy of tool 
performance evaluation in multi-language environments.

7. Related work

7.1. Research on existing SCA tools

In research on SCA tools, numerous studies have explored their 
strengths and weaknesses. These tools differ in functional features, 
operational mechanisms and detection accuracy. For instance, some 
tools scan code repositories to identify vulnerabilities. OWASP De-
pendency Check leverages multiple third-party data sources to detect 
publicly disclosed vulnerabilities in project dependencies (Imtiaz et al., 
2021). In contrast, Snyk Open Source uses its proprietary Snyk Intel 
vulnerability database to scan project manifest files, build a depen-
dency tree and detect vulnerabilities (Sharma et al., 2024). However, 
existing SCA tools still struggle with complex software environments, 
leading to issues such as inaccurate dependency resolution and false 
positives in vulnerability detection (Zhao et al., 2023b; Wu et al., 2023; 
Imtiaz et al., 2021; Jiang et al., 2024). Dietrich et al. (2023) showed 
that shading and cloning operations significantly reduce the accuracy 
of SCA tools, highlighting their weakness in handling dependency 
modifications.

Despite extensive research on SCA tools, a comprehensive evalu-
ation that spans functionality and environmental complexity remains 
absent. Prior studies often focus solely on vulnerability detection out-
comes (Prana et al., 2021), neglecting variations in dependency resolu-
tion and complex scenarios, or are limited to specific ecosystems (Zhan 
et al., 2020; Jiang et al., 2024; Imtiaz et al., 2021) and program-
ming languages (Zhao et al., 2023b; Dann et al., 2021), which re-
duces their applicability in broader contexts. Our study addresses this 
gap by jointly evaluating detection capabilities under realistic, cross-
dimensional conditions.

Zhan et al. (2020) investigated binary scanning approaches and 
identified common steps in feature-based detection, covering aspects 
such as version inference and obfuscation recovery. However, their 
comparison was limited to tool-level scanning strategies and did not 
analyze how different build forms within the same tool impact de-
tection outcomes. Our work extends this by comparing the stabil-
ity and effectiveness of the same SCA tool under both source-based 
and binary-based modes, revealing internal inconsistencies that affect 
accuracy.

Prana et al. (2021) conducted a comparative analysis of popular 
SCA tools based on vulnerability detection and CI integration. They 
found that even tools using the same database, such as Snyk and Red 
Hat, report different vulnerabilities, indicating variations in algorithms 
or implementation. We extend this work by examining how tool per-
formance changes under adversarial conditions like metadata poisoning 
and dependency obfuscation, showing that most tools lack robustness 
in such scenarios.

Unlike previous studies that rely heavily on average precision or re-
call, we introduce detection stability as a critical metric, using standard 
deviation across datasets to assess the consistency of tool performance. 
This reveals that tools with broader coverage often suffer from high 
performance variance, a trade-off not captured by existing work.

Imtiaz et al. (2021) benchmarked nine SCA tools on OpenMRS, fo-
cusing on runtime, vulnerability count, and dependency tracking. While 
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valuable, their study centered on a single application and lacked cov-
erage of multi-language support and adversarial behavior. In contrast, 
our experiments span six datasets, including both curated real-world 
projects and adversarially designed cases (e.g., DS3, DS5), which reflect 
common patterns in real attacks such as SolarWinds and typosquat-
ting (Ohm et al., 2020; Martínez and Durán, 2021).

Zhao et al. (2023a) proposed a model to evaluate dependency 
resolution in the Maven ecosystem (SSM), reporting average F1 scores 
and accuracy limitations in the build and pre-build phases. While their 
results provide insight into Maven-specific tool performance, our study 
expands this to multi-language ecosystems and demonstrates that tools 
often perform inconsistently when faced with language-specific build 
systems and binary-only releases.

Overall, our contribution lies not only in aggregating detection re-
sults but in uncovering interaction effects between detection functions 
and real-world scenarios—such as the observed degradation of license 
recognition in binary mode, or the instability of vulnerability detection 
under adversarial construction. This integrated view enables us to 
distinguish between tools that merely function under ideal settings and 
those capable of handling complex, evolving software supply chains.

7.2. Research on open-source dependencies, vulnerabilities, and license 
detection

In research on open-source dependencies, vulnerabilities and license 
detection, scholars have proposed various methods and tools to address 
the security and compliance risks associated with OSS. Vulnerabilities 
in open-source components often stem from TPLs or frameworks, typ-
ically due to coding errors, misconfigurations, or outdated dependen-
cies. For example, when the Apache Log4j2 vulnerability was disclosed, 
it had a significant impact, affecting over 35,000 Java packages and 
more than 8% of the Maven ecosystem (Zhao et al., 2023b; Wu et al., 
2023; Wetter and Ringland, 2021). The scope of these vulnerabilities is 
broad, particularly when popular libraries are affected, as all projects 
depending on those libraries are at risk (Zhao et al., 2023a).

To detect and mitigate these risks, researchers have proposed vari-
ous strategies and tools. Tang et al. (2022) introduced LibDB, a frame-
work for detecting TPLs in C++ binaries. LibDB includes three main 
modules: the feature extraction module, which identifies basic and 
function vector features from binary files and constructs function call 
graphs; the fast detection module, which searches for candidate li-
braries in a local database using feature channels; and the FCG filtering 
module, which compares the function call graphs of candidate libraries 
and the detection target using a graph embedding network to filter out 
incorrectly reported libraries (Tang et al., 2022). Similarly, Duan et al. 
(2017) proposed OSSPolice, a tool for detecting dependencies in Java 
and C/C++ binaries. OSSPolice generates software feature signatures 
using syntactic features like string literals and functions and achieves 
high scalability and accuracy through a hierarchical indexing scheme. 
However, its performance is limited by control flow obfuscation (Duan 
et al., 2017). Additionally, Li et al. (2024) presented a method for 
analyzing TPLs based on pre-built dependency graphs. By employing 
a Common Platform Enumeration (CPE) transformation algorithm, this 
method constructs localized dependency graphs, enabling teams to 
perform TPL analysis and vulnerability scanning within their local 
environments. Experimental results showed that this approach is effi-
cient while maintaining high precision. Zhang et al. (2018) introduced 
LibPecker, which uses class dependencies as code features and employs 
fuzzy class matching to identify TPLs. Although this method has high 
time complexity during the feature matching phase, its similarity-
based feature calculation based on package structure provides valuable 
insights for future research.

In vulnerability detection, Zhao et al. (2023b) conducted a large-
scale empirical study to explore dependency vulnerabilities. Using the 
Veracode SCA tool, they analyzed 450 projects in Java, Python and 
Ruby, revealing that ‘‘denial of service’’ and ‘‘information leakage’’ are 
13 
common vulnerability types across these languages. They also found 
that high-severity vulnerabilities are more frequent in Java and Python 
projects. Additionally, the study showed that the number of direct de-
pendencies in a project has a greater impact on vulnerabilities than on 
factors such as project age or commit frequency. Furthermore, Ivanova 
et al. (2024) highlighted that even small metadata modifications can 
significantly affect SCA tool detection, leading to false positives or 
negatives.

In license detection, Zhao et al. (2023b) proposed an efficient and 
accurate model for identifying license texts, which includes an extrac-
tion module and a recognition module. Experimental results demon-
strated that this model outperforms typical existing license detection 
tools in terms of both accuracy and recall. However, current SCA tools 
still fall short in license detection, especially in complex dependency 
networks, where identifying which dependencies pose genuine risks 
remains challenging (Dann et al., 2021).

Building on these findings, our study expands the evaluation scope 
by incorporating six curated datasets across multiple dimensions, in-
cluding Java and binary dependencies, multi-language projects, com-
plex licensing, and adversarial scenarios. Unlike prior studies that 
focused on a single detection capability (Tang et al., 2022; Zhao et al., 
2023b; Zhang et al., 2018; Ivanova et al., 2024; Dann et al., 2021), 
our evaluation integrates dependency detection, vulnerability identi-
fication, and license recognition into a unified assessment using both 
commercial and open-source tools. This approach enables a compre-
hensive examination of SCA tool performance under realistic conditions 
that better reflect modern software development practices.

8. Conclusion

This study systematically evaluates the capabilities of SCA tools 
in OSS governance by introducing a comprehensive evaluation model 
covering dependency detection, vulnerability identification, and license 
recognition. The framework focuses on multi-language ecosystems, 
source and binary dependency tracking, and adversarial threat. Us-
ing standardized test sets and quantitative metrics, the results reveal 
substantial performance gaps across tools and scenarios. While some 
tools perform well in source-based, single-language settings, they of-
ten struggle in more complex scenarios. These challenging conditions 
demonstrate that SCA tools are not yet ready to meet the demands 
of real-world software supply chain environments. These findings sug-
gest that current SCA tools function as practical tools in idealized 
conditions, but remain limited toys when exposed to the real-world 
software supply chain risks. The study underscores the need for better 
multi-language support, more reliable binary analysis, and stronger 
resilience against evolving threats. Although it offers targeted recom-
mendations for tool developers, users, and researchers, the study has 
certain limitations, including dataset diversity and tool selection con-
straints. Additionally, temporal factors and evolving attack techniques 
may affect the generalizability of the results. Our future research will 
prioritize enhancing SCA tool readiness for these challenging scenarios 
to refine evaluation methodologies and improve tool effectiveness, 
ultimately advancing OSS security and governance.
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