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The widespread adoption of open-source software (OSS) has introduced new security challenges to the software
supply chain. While existing studies confirm the basic capabilities of Software Composition Analysis (SCA)
tools, such as vulnerability detection and dependency resolution. They often focus on single ecosystems or
detection aspects. This limited scope overlooks real-world complexities, including multi-language ecosystems,
source and binary dependencies, and adversarial threats. Without a comprehensive evaluation, SCA tools may
perform well in controlled settings but struggle in more complex scenarios. To address this gap, this study
proposes a evaluation framework centered on the core functionalities of SCA tools: dependency detection,
vulnerability identification, and license inspection. It covers three key dimensions including multi-language
ecosystems compatibility, build forms, and attack defense. Using standardized datasets and quantitative
metrics, such as precision, recall, Fl-score and standard deviation, we evaluate four representative SCA
tools, including both open-source and commercial options. Results reveal significant limitations in binary
dependencies, language coverage, and license consistency. SCA tools also face challenges in balancing precision,
coverage and robustness. The study highlights systemic shortcomings in current SCA tools, revealing that many
perform like limited-use toys under real-world conditions. It offers data-driven recommendations to guide the
evolution of these tools into practical, reliable solutions for supply chain security governance.
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1. Introduction and deploying numerous projects, leading to website failures. An-
other example is the Log4j2 remote code execution vulnerability in
2021 (Hiesgen et al., 2024; Zhao et al., 2023b; Wu et al., 2023; Wetter
and Ringland, 2021). As one of the mainstream logging libraries for
Java software projects, its vulnerability had a broad impact, caus-

ing significant losses to the information security of governments and

Open-source software (OSS) has become pivotal in software de-
velopment, supporting systems across virtually all industries (Duan
et al., 2017; Li et al., 2024; Ivanova et al., 2024). The OSS supply
chain (Wermke et al., 2023) is composed of interdependent modules
and libraries, forming a complex network of dependencies through code

reuse (Ohm et al., 2020; Ma, 2018). While this complexity enables rapid
integration of functional components and accelerates development, it
also introduces significant security risks (Imtiaz et al., 2021; Zhao et al.,
2023a).

Components in the OSS supply chain come from diverse sources and
may pose risks like security vulnerabilities, license compliance issues
and version compatibility problems (Zahan, 2023; Tang et al., 2022;
Wu et al., 2023; Jiang et al., 2024; Dietrich et al., 2023). Once these
risks propagate, they can severely affect software systems reliant on the
affected components (Fourné et al., 2023).

For instance, in 2016, the npm package left-pad was deleted by its
developer (Wikipedia contributors, 2025a). Given its widespread use
in the front-end ecosystem, its removal caused disruptions in building

* Corresponding authors.
E-mail addresses: gsfan@ecust.edu.cn (G. Fan), yhq@ecust.edu.cn (H. Yu).

https://doi.org/10.1016/j.cose.2025.104624

enterprises.

Software Composition Analysis (SCA) tools analyze open-source
components used in software projects. They are recommended as a
key measure for managing open-source risks by assessing the security,
quality and licensing of these components (Ladisa et al., 2023). An
increasing number of enterprises and development teams have recog-
nized the crucial role of SCA tools in safeguarding OSS supply chains
and have begun to actively use them (Zhan et al., 2020; Zhao et al.,
2023b; Prana et al., 2021; Dann et al., 2021; Jiang et al., 2024; Imtiaz
et al., 2021). These tools can analyze software project dependencies,
identify potential vulnerabilities and license issues and support devel-
opers in making timely corrections. However, it is important to note
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that existing SCA tools vary significantly in terms of accuracy, coverage
and usability (Dietrich et al., 2023). On the one hand, there are
performance differences across tools, particularly in core functionalities
such as dependency detection, vulnerability identification and license
checking. On the other hand, frequent false positives and negatives
lead to inaccurate security assessments, which in turn affect the overall
quality and reliability of the software.

Although some studies compare the performance of SCA tools, most
are limited to specific scenarios or single datasets, lacking systematic
validation of multi-language compatibility, binary dependency detec-
tion and adversarial threats. Sharma et al. (2024) compared several
popular SCA tools, but their evaluation mainly focused on vulnerability
detection, failing to cover key functions like dependency management
and license compliance. Similarly, Imtiaz et al. (2021) revealed dif-
ferences in vulnerability tracking and operational efficiency in their
study of the large-scale OpenMRS Web application, but did not evaluate
multi-language support or binary dependency detection.

These limitations are especially evident in multi-language ecosys-
tems. Zhao et al. (2023b) proposed a dependency resolution evaluation
model that systematically revealed the SSM support deficiencies of
SCA tools in the Maven ecosystem, but their findings do not gener-
alize well to other technology stacks like Python and C/C++. Jiang
et al. (2024) demonstrated that code cloning and feature redundancy
can lead to significant misjudgments in third-party library detection
by traditional SCA tools in the C/C++ ecosystem, but such studies
often focus on single-language optimization, lacking validation across
ecosystems. Without a comprehensive evaluation, key performance
dimensions remain unexplored, which may lead to overestimating tool
effectiveness in real-world use.

Additionally, few studies have systematically evaluated the impact
of adversarial operations on SCA tools, a critical aspect of modern
software supply chain security. Dietrich et al. (2023) revealed the
interference of code shadowing and cloning operations on tool ac-
curacy, but did not propose a quantitative adversarial testing frame-
work. Zhan et al. (2020) proposed an extensible evaluation framework
for binary obfuscation scenarios, but failed to analyze the stability
differences across various build forms. Neglecting any detection di-
mension, whether dependency, vulnerability, or license, may lead to
tools that perform well in specific tests but fail in diverse and complex
environments.

To address this gap, this study proposes a quantitative evaluation
model that integrates three core functions: dependency detection, vul-
nerability identification and license recognition. It also covers three
key scenarios: multi-language ecosystem compatibility, source and bi-
nary forms and adversarial threats (Wang et al., 2023). The model
employs a quantitative indicator system based on recall, precision, F1-
score and standard deviation to assess performance. We evaluate four
representative SCA tools using standardized datasets designed to reflect
real-world complexity. Results reveal that, while these tools may per-
form adequately in controlled settings, they often fail to handle more
demanding scenarios involving low-level and emerging languages, bi-
nary dependencies, adversarial threats, and license complexity. These
findings highlight the gap between current capabilities and practical
needs—suggesting that many SCA tools behave more like limited-use
toys than reliable solutions when facing real-world software supply
chain challenges. The study provides data-driven guidance for devel-
opers, users, and researchers seeking to improve tool robustness and
applicability.

The main contributions of this paper are as follows:

1. This study proposes the first comprehensive evaluation model
that integrates three core functions: dependency detection, vul-
nerability identification and license recognition. It covers multi-
language ecosystems, source and binary forms and adversarial
threats, addressing the limitations of previous research focused
on single function or ecosystem.
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2. We construct a standardized test suite encompassing Java
datasets, multi-language projects, diverse build methods, and
adversarial scenarios. The datasets are derived from academic
literature and leading open-source repositories over the past five
years. All datasets and ground-truth lists are open-sourced to
support reproducibility.

3. Experiments on six datasets using four state-of-the-art tools,
including RA, CleanSource, OpenSCA, and Snyk, this study iden-
tifies weaknesses in both commercial and open-source solutions
and proposes targeted optimizations.

The organization of this paper is as follows: Section 2 provides
an overview of the background and technical workflow of SCA tools.
Section 3 outlines the methodology, including the evaluation model,
research questions, datasets, tools, and evaluation metrics. Section 4
presents the performance differences and limitations of the tools in
dependency detection, vulnerability identification, license recognition
and stability analysis. Section 5 discusses the findings from the ex-
perimental results and offers recommendations for tool developers,
users and researchers. Section 6 addresses the threats to the validity of
the experiments. Section 7 compares this study with existing research
and reviews related work. Finally, Section 8 summarizes the research
conclusions and implications for the industry.

2. Background
2.1. Terminology

Open Source Component: A software module or library released
under an open-source license that permits anyone to use, modify
and distribute it. These components are frequently integrated into
projects during both development and operations (Open Source Initia-
tive, 2025).

Dependency: A reference from one software module or component
to another. In OSS, dependencies can be direct, where one component
immediately relies on another, or indirect, where a component depends
on another that, in turn, relies on a third-party component.

Vulnerability: A flaw or weakness in software that attackers can
exploit. Such vulnerabilities in open-source components may compro-
mise the security of an entire system, making their identification and
management a key task for SCA tools.

License Compliance: The adherence to the terms set by OSS li-
censes, which define how the software may be used, modified and
distributed. SCA tools help ensure that the open-source components
in a project comply with these licensing terms, thereby reducing legal
risks (Microsoft, 2025).

Binary Dependency: A runtime dependency on binary files, typ-
ically compiled code. Unlike source code dependencies, analyzing bi-
nary dependencies requires handling compiled files and libraries, which
adds complexity to dependency resolution (Pei et al., 2022).

Multi-Language Dependency: Dependencies involving
components written in multiple programming languages, such as Java,
Python, or C. These dependencies are typically resolved through sep-
arate language-specific package managers, rather than through cross-
language function calls (Yang et al., 2024).

Multi-Language Ecosystem: A software project composed of mul-
tiple programming languages and corresponding build or dependency
management tools, such as Maven, npm, and pip. This evaluation
dimension assesses whether SCA tools can consistently and accurately
identify dependencies across diverse language ecosystems (Mayer et al.,
2017; Feng et al., 2024).

Adversarial Operations: Techniques that test the robustness and
accuracy of SCA tools by simulating attacks. These methods, including

1 The datasets and ground-truth lists are available at: https://github.com/
ErqgiFang/Benchmarking-SCA-Tools.
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Fig. 1. SCA workflow.

code obfuscation and dynamic loading, aim to bypass detection mecha-
nisms and reveal potential weaknesses (Bacci et al., 2018; Wang et al.,
2023).

2.2. Overview of SCA

SCA is a key technique for identifying, tracking, and managing
open-source components, third-party libraries (TPLs), and dependen-
cies in software projects (Imtiaz et al., 2021; Dann et al., 2021).
SCA tools support this process by mapping software components and
associated risks, such as security vulnerabilities, license conflicts, and
outdated or redundant dependencies. They provide developers and
security teams with data-driven insights for risk management and
compliance decisions (Sharma et al., 2024).

From technical process perspective, the SCA tools execution pipeline
consists of four stages (Ponta et al., 2018; Decan et al., 2019; Microsoft,
2025; Wikipedia contributors, 2025b), as shown in Fig. 1. In the data
collection stage, the tool scans the project’s source code repository,
builds configuration files such as pom.xml and package. json and
binary files in JAR or ELF format. In the dependency resolution
stage, the tool parses dependency declarations, builds tool configura-
tions and runtime environments to generate a complete dependency
tree (Decan et al., 2019). In the risk matching stage, the parsed results
are compared with vulnerability databases, license repositories and
version compatibility rules to identify high-risk components. Finally,
in the report generation stage, the tool produces a Software Bill of
Materials (SBOM) (Sorocean et al., 2024; O’Donoghue et al., 2024), a
list of vulnerabilities and compliance recommendations and formulates
remediation strategies.

Existing studies primarily examine the functionality of SCA tools
from a single perspective, such as dependency management (Zhao et al.,
2023b; Ombredanne, 2020; Jiang et al., 2023, 2024) or vulnerability
detection (Kengo Oka, 2021; Imtiaz et al., 2021; Prana et al., 2021),
without integrating multiple detection capabilities into a comprehen-
sive assessment. Moreover, evaluating license compliance is crucial for
a comprehensive analysis of SCA tools (Ombredanne, 2020; Duan et al.,
2024).

The technical value of SCA tools is reflected in three dimensions:
dependency visualization and management, which involves con-
structing multilevel dependency topology maps to reveal direct and
transitive dependencies, assisting in optimizing dependency versions or
removing redundant components; security risk management, which
enables vulnerability reachability analysis and impact assessment by
correlating with vulnerability databases such as NVD and Snyk Intel;
and compliance assurance, which involves parsing open-source li-
censes like Apache-2.0 and GPL-3.0 and detecting potential constraints
of contagious licenses on commercial code.
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Evaluation Metrics

Core functionalities, including dependency detection, vulnerabil-
ity identification, and license inspection, constitute the foundation
of modern SCA tools. However, their effectiveness depends not only
on functional accuracy but also on adaptability to challenging sce-
narios. Specifically, the ability to support key dimensions, including
multi-language ecosystems, source and binary forms and adversarial
threats, is essential for ensuring robustness and practical applicability
in complex software supply chains.

Although SCA tools are essential for software supply chain security,
their effectiveness is limited by challenges such as multi-language
ecosystem, binary dependency parsing and adversarial threat. There-
fore, developing an evaluation framework that addresses multiple sce-
narios and systematically assesses these tools’ performance is crucial
for advancing both technology and industry applications.

3. Study methodology
3.1. Evaluation model

The evaluation model provides a structured framework for assessing
the performance of SCA tools across diverse scenarios. Building on prior
criteria proposed in related studies (Zhan et al., 2020; Zhao et al.,
2023b, 2021), the model is structured around three core dimensions:
evaluation perspectives, evaluation scope, and evaluation metrics, as
illustrated in Fig. 2. It defines three key scenarios that SCA tools must
address, and aligns them with the core functionalities. These elements
together support a comprehensive and systematic evaluation of tool
capabilities.

 Evaluation Perspectives focus on three core functions of SCA tools:
Dependency Detection, Vulnerability Identification, and License
Inspection. Dependency detection evaluates the tool’s capability to
accurately construct a SBOM, vulnerability identification assesses
its effectiveness in detecting security risks, and license inspection
examines its ability to manage legal risks associated with open-source
licenses.
+ Evaluation Scope consists of three key dimensions: Multi-Language
Ecosystem, Source and Binary Form, and Adversarial Threat.
These dimensions address practical challenges in software supply
chains, including multi-language development, diverse build envi-
ronments, and adversarial attack techniques. The model integrates
insights from development practices, technological diversity, and
security threats to provide a comprehensive evaluation framework
covering both routine detection and complex adversarial scenarios.
Evaluation Metrics include Recall, Precision, F1-Score, and Stan-
dard Deviation to assess detection accuracy and robustness. Recall
measures a tool’s ability to identify all existing vulnerabilities and
dependencies, while precision indicates its effectiveness in minimiz-
ing false positives. F1-score provides a balanced metric of precision
and recall. Additionally, standard deviation quantifies the variability
of results under adversarial operations through repeated experiments,
indicating the tool’s consistency under varying conditions.
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3.2. Workflow

Fig. 3 illustrates the workflow of our study, structured around the
proposed evaluation model. We compile benchmark datasets from the
past five years’ academic studies and official open-source repositories
such as GitHub. These datasets cover multi-language projects, source
and binary form, and adversarial threat scenarios. To ensure broad
applicability and reflect diverse technical approaches, we include both
commercial and open-source SCA tools, selecting four representative
ones for evaluation.

Across multiple scenarios, we systematically test these tools by
extracting ground-truth data from the datasets and computing relevant
metrics. By comparing evaluation results across different scenarios, we
identify limitations in dependency detection, vulnerability identifica-
tion, and license inspection. Based on these observations, we summa-
rize our findings and provide recommendations for tool developers,
users, and researchers.

3.3. Research questions

This study evaluates the overall effectiveness of SCA tools, focusing
on four key research questions (RQs) that examine their performance
limits, particularly in core functions. The specific RQs are:

» RQ1: How effective are SCA tools in detecting dependencies? This
question evaluates dependency detection from three perspectives:
multi-language ecosystem, build form and adversarial threats.

— For multi-language ecosystem, DS1 on the Java Maven database
and DS4 on multi-language projects are used to compare how
effectively the tools resolve Java and multi-language dependency
chains.

— For build form, the differences in dependency resolution between
source and binary code are evaluated by comparing the results
of DS2 on binary files with those of DS1 and DS3-5 on source
dependencies.

— For adversarial threats, false negative rates are measured for de-
pendency hijacking and code obfuscation using DS1 and DS3 for at-
tacks on Maven projects, and using DS4 and DS5 for multi-language
obfuscation.

RQ2: Can SCA tools effectively identify vulnerabilities in the
supply chain attack scenarios? Due to incomplete vulnerability
data and limited details in some datasets (Dietrich et al., 2023), this
study uses DS3 to analyze attacks on Maven projects, testing the tools’
ability to detect known vulnerabilities across 11 adversarial scenarios.
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* RQ3: How well do SCA tools recognize licenses in complex licens-
ing scenarios? Using DS6 based on the SPDX license, we assess the
tools’ ability to identify licenses with naming discrepancies, such as
different versions and full names versus abbreviations like “GNU Gen-
eral Public License v2.0” and “GPL-2.0”. Since regex-based methods
struggle with these variations, a semi-automated process was used to
evaluate 663 licenses.

RQ4: How stable are SCA tools in different detection scenarios?
Dependency detection involves multi-language ecosystems, source
and binary form and adversarial threat scenarios. Datasets DS1 to
DS5 include large, well-annotated samples. We calculate the standard
deviation (o) of average recall, precision and Fl-score across the
datasets to assess the consistency of tool performance in complex
software supply chain environments.

3.4. Tool selection

To ensure a balanced evaluation, we selected four representative
SCA tools, based on differences in architecture, deployment, and adop-
tion across industry and academia. This selection includes both com-
mercial and open-source solutions, reflecting varied levels of technical
maturity and usage contexts. RA is a commercial enterprise-grade tool
with broad language support and strong detection capabilities. Snyk
represents modern DevSecOps practices, offering risk-based vulnerabil-
ity scanning and wide integration in development pipelines (Sushma
et al., 2023). OpenSCA is an open-source project widely adopted in the
Chinese security community, valued for its transparency, extensibility,
and ecosystem coverage.

3.4.1. Tool 1: Commercial tool RA

RA, anonymized due to the request of its commercial provider,
is an enterprise-grade SCA tool that supports dependency analysis,
vulnerability detection and license compliance. Its strength lies in its
comprehensive detection methods, which identify software components
through dependency relationships, file structures, code snippets and
binary signatures. RA generates detailed component inventories at
the project and coordinate levels. Its broad language support and
comprehensive features make it suitable for large-scale enterprise use.

3.4.2. Tool 2: Commercial tool CleanSource

CleanSource, developed by SecTrend, is known for its high detec-
tion accuracy and strong performance in adversarial scenarios, mak-
ing it suitable for complex enterprise-level security and compliance
needs. It has been deployed by major tech companies such as Ten-
cent (Global TMT, 2025), reflecting its effectiveness in real-world. Its
technical strengths include: (1) dependency tree visualization to map
complex relationships; (2) high-precision vulnerability matching and
risk assessment based on authoritative databases such as CVE and
CNVD; (3) adaptive recognition algorithms for extracting component
details, including versioning, licensing and encryption methods; (4)
the ability to scan binary packages without requiring source code,
enabling fast and passive analysis; and (5) license compatibility checks
for open-source components.

3.4.3. Tool 3: Open-source tool OpenSCA

OpenSCA, the open-source version of Xmirror Security’s Xcheck
SCA, is widely used in small and medium-sized projects. In this study,
we use version v3. OpenSCA supports dependency analysis and vulnera-
bility detection for major programming languages such as Java, Python,
PHP and Golang, integrating with the CVE database for basic vulnera-
bility scanning and component-level license identification. However, it
lacks file-level license detection, has limited binary analysis capabilities
and struggles with obfuscation or encryption scenarios, making it more
suitable for less complex environments.
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Table 1
Dataset information and tags.
D Dataset description Source Tags
DS1 Classic Java Dependencies Zhao et al. (2023b) Dependency, Java
DS2 Binary Dependencies Zhan et al. (2020) Dependency, Binary
DS3 Maven Dependencies with Adversarial Modifications Ivanova et al. (2024) Dependency, Vulnerability, Java, Adversarial
DS4 Multi-Language Dependencies SourceClear (2025) Dependency, Multi-language
DS5 Multi-Language Dataset with Adversarial Modifications Wu et al. (2023) Dependency, Multi-language, Adversarial
DS6 License Dataset SPDX (2025) License

3.4.4. Tool 4: Commercial tool Snyk

Snyk is a commercial SCA tool designed for vulnerability detection
and remediation. It supports a wide range of programming languages
and integrates with platforms such as GitHub to perform automated
dependency scanning and continuous monitoring. Snyk prioritizes high-
impact vulnerabilities and provides actionable fix suggestions. In our
experiments, we used version v1.1297.1 (Snyk Documentation, 2025;
Snyk CLI Developers, 2025).

3.5. Dataset selection and construction

The basic information of the datasets is summarized in Table 1. The
design logic, data sources and evaluation objectives are detailed below.
Although all datasets are derived from benchmark-oriented scenarios,
they are constructed based on patterns observed in real-world projects
and threat reports. Each dataset is designed to reflect specific challenges
faced by SCA tools in practice, including multi-language ecosystem,
binary dependency, and attack defense.

3.5.1. Dataset 1 (DS1): Java dependency dataset

This dataset is based on the benchmark framework proposed by
Zhao et al. (2023b), designed to model the complexity of dependency
management within the Java-Maven ecosystem. It includes Maven
modules and their dependency topologies extracted from real Java
projects, covering eight Maven Dependency Features (MDF) and three
Maven Dependency Settings (MDS). MDF includes dependency man-
agement, parent inheritance, exclusion, profiles, optional dependencies,
version ranges and variable-based versioning, while MDS includes de-
pendency type, classifier and scope. The dataset consists of 256 MDF
combinations and 22 MDS instances, forming a standardized test set of
259 experimental projects. Each project is annotated with ground-truth
dependency lists to ensure reliable benchmarking.

3.5.2. Dataset 2 (DS2): Binary dependency dataset

To evaluate SCA tools’ ability to detect OSS reuse in binary form,
this study uses a dataset from Zhan et al. (2020) consisting of 35
complex executables generated from GCC, Clang and MSVC. It includes
24 Linux ELF files (10 from Clang) and 11 Windows PE files from
MSVC, covering more than one million assembly functions and 55
million lines of C/C++ code. These binaries, derived from large-scale
applications such as physics engines and payment protocols, reflect
real-world production complexity.

3.5.3. Dataset 3 (DS3): Java adversarial dataset

To test the robustness of SCA tools against supply chain attacks,
the study uses an adversarial Maven POM dataset from Ivanova et al.
(2024). This dataset includes 29 high-profile vulnerable dependencies
sourced from the Maven Central Repository and simulates attack sce-
narios by modifying manifest characteristics, bundling methods and
dependency configurations. It consists of 13 Maven projects, including
11 adversarial cases and 2 baselines used for comparative analysis.

To better reflect real-world threats, each scenario is mapped to
establish software supply chain attack taxonomies (Ladisa et al., 2023;
Ohm et al., 2020). Specifically, Scenarios 1-5 emulate metadata-level
obfuscation techniques such as variable-based versioning, profile-
activated dependencies, and parent—child inheritance. These mimic
subtle configuration-based evasions that hinder accurate dependency

resolution. Scenarios 6-9 simulate build-stage attacks by modifying
Uber-JAR artifacts, including the use of shaded packages, stripped
metadata, or forged manifest files, resembling techniques found in the
SolarWinds incident (Martinez and Durédn, 2021). Scenarios 10-11
reflect dependency confusion attacks, in which misleading group IDs
and tampered versions are introduced through manual installation,
representing typosquatting and hijacking behaviors commonly reported
in open ecosystems.

3.5.4. Dataset 4 (DS4): Multi-language dataset

To assess SCA tools’ compatibility and accuracy in multi-language
projects, the study adopts the “Evaluation Framework for Depen-
dency Analysis” (EFDA) dataset from SourceClear (SourceClear, 2025).
This dataset spans 10 major programming languages, including Java,
JavaScript, Python and Golang and integrates heterogeneous build
systems such as Maven, npm, pip and Go Modules. It simulates real-
world development environments with multi-language dependency
chains and standardized ground-truth annotations.

3.5.5. Dataset 5 (DS5): Adversarial multi-language dependency dataset

To test SCA tools’ ability to handle obfuscated dependencies in
multi-language scenarios, the study uses a dataset from Wu et al.
(2023), covering Python, Ruby, PHP, Java, Rust, Golang and
JavaScript. C/C++ projects were excluded due to limited support in ex-
isting SBOM tools, which could introduce evaluation bias. The dataset
introduces parser-level ambiguity by injecting non-standard syntax
into files such as Python’s requirements.txt, intentionally exploiting
inconsistencies among language-specific dependency parsers to disrupt
accurate resolution.

Beyond dependency obfuscation, DS5 also models the complexity of
vulnerability propagation in real-world software supply chains. The de-
sign captures practical issues including how vulnerabilities are reached,
the difficulty of triggering them, and the downstream responses of
dependent projects. It reflects risks from deeply nested call chains,
vulnerabilities requiring multi-layered triggering logic, and vulnerable
functions invoked without sufficient validation or control. Addition-
ally, it includes cases of misconfigured dependency management, such
as version pinning failures and hidden profiles. These characteristics
mirror the patterns of latent propagation risk and supply chain failure
observed in recent incident analyses, such as those reported in Ladisa
et al. (2023), and help reveal the limitations of existing SCA tools in
identifying and mitigating such threats.

3.5.6. Dataset 6 (DS6): License benchmark

For license detection evaluation, the study employs a dataset based
on the Software Package Data Exchange (SPDX) standard, which in-
cludes 663 licenses with detailed metadata and versioning informa-
tion (SPDX, 2025). Provided in RDFa, HTML, Text and JSON formats,
the dataset enables the evaluation of tools’ ability to recognize common
licenses and resolve versioning discrepancies.

3.6. Metric setup

To evaluate the performance of SCA tools across environments,
we use three key metrics: recall for detection coverage, precision
for result reliability and standard deviation for consistency across
scenarios.
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In the experimental design, ground-truth serves as the baseline,
transforming detection tasks into binary classification problems. Each
dataset directory records four key values: matches, representing cor-
rect detections where predictions align with the ground-truth; misses,
indicating ground-truth elements that the tool failed to detect; extras,
referring to incorrect predictions not present in the ground-truth; and
truths, denoting the total number of ground-truth elements. These
values form the basis for computing recall, precision and standard
deviation. The methodology includes the following steps:

1. Dynamic data definition: Positive labels, including dependency
names, vulnerability identifiers and license IDs, are defined by
the dataset’s objectives.

2. Confusion matrix analysis: Performance is evaluated using a
confusion matrix with True Positives (TP), False Positives (FP),
True Negatives (TN) and False Negatives (FN).

3. Cross-dataset comparison: Tools’ performance is tested across
different datasets, including adversarial and regular scenarios, to
evaluate generalization in diverse environments.

Recall, precision, and Fl-score quantify detection effectiveness,
balancing coverage and false positive control:

» Recall is the proportion of true positives among all actual pos-
itives, reflecting the tool’s ability to detect dependencies or vul-
nerabilities. Higher recall indicates fewer missed detections:

Recall = L (€8}
TP+ FN

Precision measures the proportion of true positives among all

predicted positives, reflecting the accuracy of detection results.

Higher precision reduces false positives, which is critical in ad-

versarial scenarios:

Precision = L (@3]

TP+ FP

Fl-score is the harmonic mean of precision and recall, provid-

ing a single metric that balances both aspects. It is particularly

useful when evaluating performance under class imbalance or

adversarial conditions:

_ 2 - Precision - Recall

1=— 3)

Precision + Recall ~

To evaluate stability, the standard deviation of recall and precision

across datasets is calculated as:
o —
i (g —%)?
o=y 2=t (C)]
n

where ¢ is the standard deviation, x; is the value for each dataset, X
is the average value, and n is the number of datasets. A smaller stan-
dard deviation indicates more consistent performance across different
scenarios, reflecting the robustness of the tools.

4. Empirical study
4.1. RQI: How effective are SCA tools in detecting dependencies?

To evaluate the performance of SCA tools across diverse depen-
dency scenarios, this study uses datasets covering programming lan-
guages, dependency types, and adversarial conditions. The evaluation
framework examines three key dimensions: multi-language ecosystem
compatibility, build form compatibility and robustness to adversarial
threats.

+ Multi-Language Ecosystem Dimension focuses on the ability
of tools to handle multi-language ecosystems, including Java,
Python, and JavaScript, reflecting the increasing use of multi-
language frameworks in modern development. This dimension
examines whether SCA tools can overcome single-language limi-
tations and accurately detect dependencies across complex, multi-
stack systems.
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» Build Form Dimension considers two types of dependencies:
source-level and binary-level. The former refers to structured
dependencies declared during development, while the latter in-
volves implicit runtime dependencies of compiled artifacts. The
former relies on syntax analysis and semantic reasoning, while
the latter requires reverse engineering and symbolic matching.
Together, they form a complete dependency map of the software
supply chain.

Adversarial Threat Dimension evaluates the tools’ robustness to
supply chain attacks and multi-language attacks. These scenarios
simulate real-world tactics such as code obfuscation and syntactic
manipulation.

Experimental results indicate substantial performance variations
across datasets. Table 2 shows the average number of ground-truths,
matches, misses, extras and the average recall, precision and F1-score
for each tool across 5 dependency datasets.

4.1.1. Multi-language ecosystem

To assess the generality and robustness of SCA tools in multi-
language environments, this study compares deep single-language
support using DS1, which follows Java Maven standards, with broad
multi-language coverage using DS4, which includes 10 languages
such as Java, Python, and C/C++. The number of ground-truth files
in each dataset and the number of files each tool successfully scanned
are shown in Table 3.

For DS1, Snyk and OpenSCA show the best performance with high
recall and precision, followed by RA with moderate results. Snyk
achieves the highest F1-score, demonstrating strong accuracy and low
false positives in detecting Java dependencies. OpenSCA also performs
well, with a recall of 74.86% and precision of 99.84%. RA achieves
65.76% recall and 82.58% precision but fails to detect certain files,
possibly due to complex Maven dependency features or MDS projects
exceeding its detection scope. CleanSource scans all files but shows very
low recall, averaging only three correct matches per file compared to
41 ground-truth values.

DS4, which includes ten programming languages, reveals further
differences among tools, as shown in Fig. 4. RA identifies dependencies
in eight languages, missing only Scala and C#. Snyk supports seven lan-
guages and is the only tool capable of detecting dependencies in Scala
and C#, though it fails to handle C, Objective-C, and Ruby. None of the
tools cover all ten languages. OpenSCA performs best in Python and
Ruby, with consistently high recall and precision, and shows moderate
results in Java, Golang, JavaScript, and PHP. However, its performance
drops sharply in C and Objective-C, where both recall and precision are
near zero. RA achieves strong recall in Objective-C, Golang, Java, and
JavaScript, but its precision is highly variable, remaining low in PHP
and C. CleanSource demonstrates limited multi-language capabilities,
performing relatively well only in Objective-C and Python. It fails to
detect dependencies in Java, Ruby, or C, and its results in Golang, PHP,
and JavaScript are inconsistent. Snyk achieves the highest recall across
most languages, reflecting strong multi-language coverage, yet its lower
precision results in only moderate F1.

Finding 1: Existing SCA tools exhibit clear differences in multi-
language ecosystem. While detection techniques are mature for
traditional environments like Java, they remain weak for emerg-
ing languages like Go and low-level languages like C and C++,
highlighting the challenge of achieving compatibility in multi-
language dependency analysis.

4.1.2. Build form

The diversity of software build patterns imposes distinct technical
adaptation requirements on component analysis tools. From a full
lifecycle perspective, dependency detection can be categorized into two
types: source-level explicit dependencies and binary-level implicit
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Table 2
Average dependency detection performance of five datasets.
Tool Dataset Matches Misses Extras Truths Recall (%) Precision (%) F1 (%)
DS1 24.00 17.18 5.97 41.18 65.76 82.58 70.84
DS2 0.56 6.06 1.81 6.63 7.21 24.22 10.46
RA DS3 51.00 15.00 53.63 66.00 77.58 54.84 62.60
DS4 3.33 0.72 19.62 4.05 74.48 36.42 42.63
DS5 6.00 33.50 20.25 39.50 19.65 44.41 25.02
DS1 3.01 37.95 1.02 40.97 8.52 73.99 15.01
DS2 0.74 7.04 1.96 7.78 9.37 28.41 12.62
CleanSource DS3 22.33 43.00 23.11 65.33 34.16 52.77 38.84
DS4 1.96 2.30 14.78 4.26 32.96 22.71 24.13
DS5 2.40 110.60 2.00 113.00 9.43 36.33 14.26
Ds1 28.13 12.83 0.08 40.97 74.86 99.84 84.68
DS2 / / / / / / /
OpenSCA DS3 44.50 20.80 10.30 65.80 68.02 70.40 68.42
DS4 3.86 0.82 20.14 4.68 85.25 48.12 49.82
DS5 15.00 83.43 1.86 98.43 33.38 66.69 40.96
DS1 29.88 11.09 0.13 40.97 81.21 99.80 88.34
DS2 / / / / / / /
Snyk DS3 39.30 26.00 2.90 65.30 60.00 56.96 58.43
DSs4 2.86 0.45 22.77 3.83 86.84 23.14 32.52
DS5 15.17 81.50 4.17 96.67 32.54 49.62 37.95
Note: All metrics are reported as the average values computed across different files within the same dataset.
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Fig. 4. Tool performance on DS4 in multi-language analysis.
dependencies. Source-level detection is evaluated using DS1, DS3-5 to
assess the ability to parse structured dependency declarations. Binary-
Table 3 level detection is tested with DS2 (binary files compiled with gcc, clang
Number of files effectively scanned by tools (Total per dataset in parentheses). and MSVC) to evaluate the ability to trace dependencies without source
Tool DS1(258) DS2(32) DS3(10) DS4(54) DS5(12) code.
RA 131 32 8 40 4 Fig. 5 illustrates the overall performance of the four tools across the
CleanSource 258 23 9 27 5 five datasets, where areas enclosed by the same color block represent
OpenSCA 258 / 10 29 7 the same dataset. A comparison between the red and other colored
Snyk 258 / 10 22 6

regions reveals significant differences in handling source-level and
binary-level dependencies. In source-level scenarios, the tools achieve
an average recall of 48.7%, and an average precision of 57.4% (with
OpenSCA reaching 99.84%), indicating strong capability in managing




C. Shu et al.

100/ Tools
—o— RA
—— OpenSCA
—— CleanSource
801 —— synk

Datasets
60/ dsl
ds2
ds3
ds4

401 o s

Recall (%)

20 °

0 20 40 60 80 100
Precision (%)

Fig. 5. Performance of tools across DS1-5. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 4
Tools’ dependency detection in attack scenarios on DS3.

Attack scenarios RA CleanSource OpenSCA Snyk
0-baselinel v v v v
0-baseline2 / / / /
1-version-variable v v v v
2-dependency-management v v v v
3-profiles X v v 4
4-parent—child-version-variable v ° v v
5-parent—child-groupid-variable X X v v
6-uber-jar v v v °
7-shaded-uber-jar v v v °
8-bare-uber-jar v ° ° °
9-uber-jar-modified-metadata 4 v ° °
10-manual-install-modified-groupid / / / /
11-manual-install-wrong-version / / / /

1 Baseline 1 is utilized for comparison with manifest-related and bundling attacks.

2 Baseline 2 serves as a reference for comparison with dependency modification attacks.
Symbols: v = correct identification; x = identification failure; o = report generated,
all matches fail; / = no ground-truth data.

explicit dependencies. However, in binary-level scenarios, the average
recall drops sharply to 8.7% (RA: 7.21%, CleanSource: 9.37%) with pre-
cision falling below 30%. Notably, OpenSCA and Snyk lack binary-level
detection capabilities entirely.

Finding 2: SCA tools show significantly weaker performance
on binary datasets compared to source code scenarios, highlight-
ing limitations in handling source and binary forms. Some tools
are unable to detect any binary dependencies at all, exposing
a critical blind spot. This gap in binary-level build detection
limits comprehensive security across the software supply chain
lifecycle.

4.1.3. Adversarial threat

This study evaluates the robustness of SCA tools in threat detection
using two adversarial datasets: basic supply chain attacks (DS3) and
complex multi-language adversarial scenarios (DS5). DS3 simulates
traditional dependency hijacking in Maven projects, while DS5 tests
multi-language dependency confusion. These datasets assess the tools’
defense capabilities and ecosystem adaptability.

Table 4 and Fig. 6 present the tools’ performance boundaries, in-
cluding recall and precision, under different attack scenarios in DS3.
The “v” indicates that the tools can effectively identify and generate
prediction reports. In the basic attack scenario, OpenSCA demonstrates
strong defense, with a recall of 68.02% and precision of 70.40%, though
it fails under complex build attacks involving bare uber-jar files. In con-
trast, RA, CleanSource, and Snyk exhibit varying degrees of weakness.
RA achieves the highest recall at 77.58% but suffers a precision drop to
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Fig. 6. Tools’ dependency detection in DS3 attack scenarios.

33.56% under parent—child variable substitution, indicating difficulty
in resolving modified dependency structures. CleanSource shows severe
instability, with recall fluctuating from 9.3% to 93.1% and a low F1
score of 38.84%, reflecting poor robustness against structural attacks.
Snyk maintains moderate yet stable performance, with an F1 score of
58.43%. It handles basic and multi-module cases adequately, but fails
to match any predictions under uber-jar and metadata manipulation
scenarios, revealing clear limitations in build-stage obfuscation defense.

The complex multi-language adversarial scenario on DS5 (as shown
in Fig. 7) further amplified performance gaps among tools. All tools
struggled with adversarial operations involving Ruby and Rust. Open-
SCA maintained high accuracy in certain PHP, Golang and Java sce-
narios but showed a sharp decline in Python and JavaScript compared
to DS3. RA’s overall performance was weaker, with reliable detection
only in Golang, Java and Python, while performance in PHP, Ruby and
JavaScript deteriorated significantly. CleanSource performed moder-
ately, successfully identifying some obfuscated dependencies in Golang,
Java, JavaScript and Python, but with limited consistency. Its detection
capability in Python, PHP and JavaScript dropped significantly under
complex adversarial conditions. Snyk exhibited strong detection in
Golang, achieving high F1 scores, but performed poorly in JavaScript
where key metrics approached zero.

Finding 3: Existing SCA tools exhibit limited resilience and
poor adaptability to adversarial threats. They struggle to handle
bundling modification attacks and multi-language obfuscation,
revealing critical gaps in attack surface coverage and inconsis-
tencies in semantic analysis.

4.2. RQ2: Can SCA tools effectively identify vulnerabilities in supply chain
attack scenarios?

In software security, the vulnerability identification capability of
SCA tools is essential. This study evaluates the vulnerability and de-
pendency identification performance of RA, CleanSource, OpenSCA
and Snyk using DS3. The assessment covers both simple baseline
scenarios, such as standard dependency injection and complex ad-
versarial scenarios, such as Uber-JAR metadata tampering. Table 5
presents the tools’ vulnerability identification performance, including
recall and precision for both vulnerability and vulnerable dependency
identification. Table 6 illustrates the tools’ performance limits across
different attack scenarios.
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Table 5

Vulnerability and affected dependency detection performance (Average Across Datasets).

Tool Vul.Rec (%) Vul.Prec (%) Vul.F1 (%) Vul.Dep.Rec (%) Vul.Dep.Prec (%) Vul.Dep.F1 (%)
RA 62.12 21.59 30.94 88.40 53.92 66.15
OpenSCA 24.25 24.46 24.04 62.86 31.27 41.26
CleanSource 34.59 43.74 38.09 56.90 68.10 61.10
Snyk 23.47 16.16 18.45 87.07 65.55 74.42
Table 6 CleanSource favors precision over recall, achieving the highest vul-
Vulnerability identification of SCA tools in DS3 attack scenarios. nerability precision at 43.74% and an F1 score of 38.09%. However,
Attack scenarios RA  CleanSource  OpenSCA  Smyk its scenario coverage is limited, performing effectively in only five
0-baselinel 7 < 7 7 scenarios (including one baseline), and failing completely in complex
0-baseline2 v v/ v/ v/ cases involving version variable parsing and dependency management
1-version-variable v X v v configuration tampering.
g'sfgfeige"cy'ma"agemem : z j ; OpenSCA shows balanced but limited performance. Its vulnerability
4-parent—child-version-variable v « v v recall and precision remain low, around 24%, and it fails in specific
5-parent—child-groupid-variable X X v/ v/ bundling attacks such as bare Uber-JAR and metadata modification,
6-uber-jar 4 4 4 X where it generates reports without correct matches. Nevertheless, it
7-shaded-uber-jar v v v X . . . .
- handles a wide range of scenarios stably, detecting attacks in 11 out
8-bare-uber-jar v X ° X
9-uber-jar-modified-metadata v ° o X of 13 DS3 cases.
10-manual-install-modified-groupid v/ v v X Snyk shows the weakest performance in vulnerability identification,
11-manual-install-wrong-version v v v °

1 Baseline 1 is utilized for comparison with manifest-related and bundling attacks.

2 Baseline 2 serves as a reference for comparison with dependency modification attacks.
Symbols: v = correct identification; x = identification failure; o = report generated,
all matches fail; / = no ground-truth data.

RA demonstrates solid overall performance, with a vulnerability re-
call of 62.12%, indicating good coverage in identifying vulnerabilities.
It handles most adversarial scenarios in DS3, failing only in a few cases
such as profiles and parent—child group ID variation. For vulnerable
dependency identification, RA performs well, achieving an F1 score of
66.15%, though its low precision of 21.59%.

with a recall of 23.47%, precision of 16.16%, and an F1 score of just
18.45%. However, it performs best in detecting vulnerable dependen-
cies, achieving the highest F1 score of 74.42%. While Snyk identifies
early-stage attacks such as baseline and version variation effectively,
it fails in build-stage and manual installation scenarios. These results
indicate strong dependency-level detection but limited capability in
mapping vulnerabilities to specific identifiers, reducing its adaptability
to complex attack patterns.

Through systematic mapping of each tool’s vulnerability reports
to the NVD database and extraction of corresponding CWE entries,
we found that the top five most frequently detected CWE types are
highly consistent across tools, including CWE-502, CWE-400, CWE-770,
CWE-787, and CWE-20.
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Table 7
License recognition performance of tools.
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Average per-sample true value

Global dataset

Matches Misses Extras Recall Precision F1 Matches Misses Extras Recall Precision F1
RA 0.75 0.26 0.61 65.04% 64.83% 64.90% 179.00 484.00 202.00 27.00% 46.98% 34.29%
CleanSource 0.47 0.53 0.56 45.56% 45.56% 45.56% 23.00 640.00 7.00 3.47% 76.67% 6.64%
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Fig. 8. Performance of tools in license recognition.
Finding 4: The vulnerability detection perf £ SCA tool Table 8
X ln. ing 4 . € vulnerability .etectl.on per orman_c? of SCA tools Standard deviation of dependency recall, precision, and F1 across datasets.
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r ili mplex narios. This r rade-

pfo}o a ac{J.t? ltz’i to Cf) ple: hSCde E oS S e .ects actl ade: RA 2951 19.77 22.53
off in traditional detection methods between precision and cov- OpenSCA 19.47 18.53 16.90
erage, as well as limitations in handling attacks like bundling CleanSource 11.99 18.57 9.79
modifications and manifest features changes. Snyk 21.32 27.53 21.89

4.3. RQ3: How well do SCA tools recognize licenses in complex licensing
scenarios?

The diversity of open-source licenses and the complexity of
license expressions, including the mixed use of full names and abbre-
viations, present key challenges for SCA tools in license recognizing.
This study evaluates the license identification and matching perfor-
mance of SCA tools using DS6, the SPDX standardized license list,
which includes 663 licenses. The analysis focuses on the semantic pars-
ing accuracy (precision) and the coverage (recall). Since other datasets
lack standardized ground-truth, SPDX serves as the only quantifiable
benchmark.

Technical limitations cause OpenSCA and Snyk to fail entirely,
generating no valid predictions. This indicates their dependency-based
matching mechanism is incompatible with SPDX’s file-level detection.
The license recognition results for RA and CleanSource are in Table
7, where “Average Per-Sample True Value” denotes the single license
prediction and “Global Dataset” refers to the entire dataset. Fig. 8
shows the success-failure match ratio reported by RA and CleanSource.

RA exhibited mixed performance, combining high per-sample ac-
curacy with low global coverage. At the individual license level, it
achieved over 65% precision and recall, averaging 0.75 matches per
license. However, at the global level, it matched only 179 licenses (27%
recall) with a 73% false negative rate. RA generated 202 predictions,
exceeding the number of valid matches, indicating systematic blind
spots for certain licenses.

In contrast, CleanSource showed more pronounced limitations. Its
global recall was below 7%, leaving 93.21% of licenses unidentified.
Even in successful cases, its precision reached 76.67%, averaging only
0.47 matches per license. The low recall and high rate of missed

10

detections suggest that CleanSource’s algorithm struggles to handle
complex license patterns.

Finding 5: SCA tools have limitations in license recognition.
These gaps underscore the systemic limitations of traditional
methods in handling expression diversity (e.g., "GPL-2.0-
only"vs. "GNU GPL v2") and version granularity (e.g., "Apache-
2.0"vs. "Apache-1.1".

4.4. RQ4: How stable are SCA tools in different detection scenarios?

The stability of SCA tools directly impacts their reliability and
deployment feasibility across various environments. Dependency detec-
tion involves multiple language, source and binary form and adversarial
threat, increasing its complexity. Using DS1-5, this study evaluates
stability based on the consistency of dependency detection results. The
standard deviation (¢) of the average recall, precision and F1 across
datasets is calculated for each tool as a measure of stability. The
experimental results are shown in Table 8.

RA indicates unstable performance across datasets, with standard
deviations of 29.51% in recall, 19.77% in precision, and 22.53% in
F1. OpenSCA is more consistent but still fluctuates, with deviations of
19.47% in recall, 18.53% in precision, and 16.90% in F1. CleanSource
demonstrates the most stable performance, particularly in F1 with a
deviation of only 9.79%. Snyk shows high inconsistency overall, with
precision varying by 27.53%, and substantial fluctuations in recall and
F1, at 21.32% and 21.89% respectively.
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Finding 6: SCA tools show poor consistency across datasets,
especially in recall and F1. Tools with broader coverage tend
to be less stable, exposing a trade-off between coverage and
consistency.

5. Discussion and implication
5.1. Discussion

Empirical findings reveal significant capability gaps and adapta-
tion challenges in existing SCA tools. While some tools perform well in
controlled, source-level scenarios, they struggle in multi-language, bi-
nary, and adversarial contexts. Performance declines sharply in binary
scenarios, as shown in DS2, due to algorithmic limitations in ad-
dressing compilation optimizations and dependency obfuscation. More-
over, SCA tools exhibit weak resistance to advanced threats, such as
post-compilation attacks and multi-language obfuscation techniques, as
shown through comparative analysis on DS1 and DS3, DS4 and DS5.

SCA tools struggle to detect metadata poisoning and obfuscated
dependency relationships, consistent with past security failures. Our
attack modeling in DS3 and DS5 reflects realistic supply chain threats
based on established scenarios. DS3 focuses on build-stage and
metadata-layer vulnerabilities, including configuration obfuscation and
tampered binary artifacts. It draws on real-world cases such as the
SolarWinds incident (Martinez and Durédn, 2021), where compromised
build outputs evaded standard scanning, and on typosquatting and
metadata manipulation attacks reported in earlier studies (Ohm et al.,
2020). DS5 models downstream risks caused by structural propaga-
tion of vulnerabilities and misconfigured dependencies, rather than
direct attacks. Aligned with prior software supply chain attack tax-
onomies (Ladisa et al., 2023), these datasets go beyond synthetic
constructs to replicate the ambiguity and complexity encountered in
actual ecosystems. The reduced precision and recall in these scenarios
highlight the difficulty of detecting complex threats across metadata,
artifacts, and runtime layers.

Vulnerability detection remains inconsistent, with high false posi-
tives and poor handling of bundling changes and manifest modifica-
tions. Similarly, license detection struggles with expression differences
and version details. The challenge of balancing detection breadth and
stability remains unresolved. Broader coverage often leads to greater
variation in recall and precision, making it difficult to achieve both
sensitivity and consistency.

These results suggest that current SCA tools may function as ef-
fective tools in well-structured, single-language, source-level environ-
ments, where dependency information is explicit and standardized.
However, in more realistic and challenging scenarios involving binary
artifacts, multi-language architectures, and adversarial threats, they fail
to maintain accuracy, coverage, and stability, acting more like toys that
lack reliable and comprehensive results.

Overall, existing SCA tools have yet to balance precision, coverage
and robustness. These issues show systemic weaknesses in managing
heterogeneous build forms, multiple adversarial threats and deep
multi-language semantic analysis, limiting their ability to address
complex software supply chain risks effectively.

5.2. Implication

5.2.1. For evaluated SCA tool developers

Our evaluation reveals distinct capability gaps in each SCA tool
when applied to multi-language, binary form, and adversarial scenar-
ios. Addressing these limitations is essential to enhance their reliability
in practical software supply chain environments.

OpenSCA lacks binary analysis capabilities and struggles with li-
cense recognition. As shown in Sections 3.4 and 4.1, it fails to detect
any dependencies in the binary dataset DS2, and performs poorly on
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DS6, where embedded or non-standard license texts are missed. To
improve, OpenSCA should integrate binary fingerprinting for compiled
artifact analysis and adopt SPDX-based license parsing with semantic
normalization.

Snyk shows limited support for binary and license-level detec-
tion, and performs inconsistently under adversarial conditions. It re-
lies solely on manifest-based scanning, leading to zero detection in
DS2. In DS3 and DSS5, recall and precision drop sharply (Section 4.1),
and standard deviation increases across metrics (Section 4.4). Snyk
should extend its scope to binary and container artifacts, strengthen re-
silience to obfuscation, and stabilize results through iterative validation
mechanisms.

CleanSource achieves high precision but consistently lower re-
call, particularly in multi-language and adversarial datasets (Table
2). Its conservative detection strategy avoids false positives but over-
looks valid dependencies. Adopting fuzzy matching and feature-tolerant
analysis could help capture implicit or partially modified components.

RA provides accurate results but suffers from limited scanning cov-
erage. In DS1, it scans significantly fewer files than other tools (Table
3), due to strict assumptions about project structure (Section 4.2). To
improve coverage, RA should relax layout constraints and implement
dynamic project boundary inference for broader applicability.

5.2.2. General recommendations for SCA tool developers

Beyond tool-specific issues, our findings highlight common lim-
itations in existing SCA tools, especially in handling non-standard
scenarios such as binary dependency. Compilation optimizations often
obscure dependencies, leading to reduced recall and precision. Ad-
dressing these challenges and expanding support for diverse compilers
and platforms like GCC, Clang, and MSVC are essential for improving
dependency tracing in source-less environments.

Improving multi-language support is equally important. As multi-
language projects are becoming more common, SCA tools need bet-
ter handling of diverse programming languages. Flexible dependency
resolution algorithms that support heterogeneous build systems like
Maven, npm and pip would enhance the resolution of multi-language
dependency chains, aligning with contemporary hybrid software devel-
opment.

Optimizing license detection is another critical need. Existing SCA
tools struggle to identify complex license patterns and distinguish
between different license versions. Developers should refine license
detection algorithms to improve accuracy and coverage.

Promoting standardization among SCA tools is crucial. Incon-
sistent license names and versions in SCA reports hinder cross-tool
comparison. Establishing unified reporting standards would improve
interoperability and consistency across different tools.

Finally, deeper integration of SCA tools into the development
lifecycle should be prioritized. Developing plugins for real-time scan-
ning and automated triggering mechanisms could enable immediate
detection and risk alerts, strengthening supply chain security.

5.2.3. For SCA tool users

Selecting the appropriate SCA tool depends on specific project
requirements since tools differ in functionality, language support and
detection accuracy. For Java-based projects requiring high detection ac-
curacy, OpenSCA is likely the best option. For multi-language projects,
RA’s broad coverage makes it a viable choice despite its varying perfor-
mance across languages. For enterprise-level projects involving binary
files, RA and CleanSource may offer a more effective solution. Addi-
tionally, combining multiple tools and manual review can further
enhance project compliance and improve overall detection accuracy.
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5.2.4. For researchers

Develop a more comprehensive evaluation framework for SCA
tools, as current research mainly focuses on specific scenarios or single
datasets. A broader framework should assess tool performance across
diverse programming languages and build environments. Moreover,
exploring advanced detection techniques is essential, as traditional
SCA methods may face challenges with future threats. Using Al or
machine learning can improve dependency detection and help identify
complex attacks by uncovering deeper patterns. Monitoring supply
chain attack trends and developing targeted defense strategies are also
crucial.

6. Threats to validity

6.1. Internal validity

Subjectivity in data processing may introduce bias. Construct-
ing ground-truth sets and prediction reports typically requires man-
ual intervention. For instance, when ground-truth information is dis-
tributed across README files and documentation, data must be col-
lected using a web crawler and manually organized into standard-
ized reports. Similarly, processing tool outputs such as JSON or CSV,
requires manually extracting key fields and defining uniform rules
for dependency name normalization and versioning removal. Despite
employing a semi-automated process to handle 663 licenses, which
consumed approximately 50 h, potential errors remain.

Configuration differences across tools may also affect the repli-
cability of results. Since configuration parameters affect detection per-
formance, this study uses default settings to reduce variability.

6.2. External validity

Selection bias in dataset choice may affect the generalizability
of the results. While this study uses six distinct datasets covering Java
projects, binary files, multi-language projects and adversarial threats,
these datasets may not fully capture the diversity of real-world software
projects.

Temporal factors may also affect the validity of the findings.
Since SCA tools’ vulnerability databases and detection algorithms are
continuously updated, the results reflect the tools’ performance at a
specific point in time. Subsequent improvements could render some
conclusions outdated.

Finally, excluding failed scans during data collection may
weaken result validity. Projects that failed to be successfully scanned
were excluded from the study, which may introduce inconsistency
in tool evaluation across the same dataset and weaken the overall
reliability of the findings.

6.3. Construct validity

Limitations in evaluation metrics may restrict a comprehensive
assessment of tool performance. This study primarily uses recall, preci-
sion, and standard deviation to evaluate performance. While these met-
rics capture core aspects, they may overlook factors such as usability,
runtime efficiency and integration with development workflows.

Furthermore, limited tool representation may reduce the general-
izability of the findings. The study evaluates only RA, CleanSource and
OpenSCA, which are representative within the commercial and open-
source domains. However, excluding widely used tools like Black Duck
may limit the results’ applicability to other SCA tools.
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6.4. Conclusion validity

The limitations of the experimental design may restrict the ap-
plicability of the conclusions. Although the study tests the robustness
of SCA tools against supply chain attacks using adversarial datasets,
these operations may not capture the full complexity of real-world
attacks, limiting the practical relevance of the findings. Moreover,
while the study includes multi-language datasets, limited support for
languages like C/C++ and Objective-C may affect the accuracy of tool
performance evaluation in multi-language environments.

7. Related work
7.1. Research on existing SCA tools

In research on SCA tools, numerous studies have explored their
strengths and weaknesses. These tools differ in functional features,
operational mechanisms and detection accuracy. For instance, some
tools scan code repositories to identify vulnerabilities. OWASP De-
pendency Check leverages multiple third-party data sources to detect
publicly disclosed vulnerabilities in project dependencies (Imtiaz et al.,
2021). In contrast, Snyk Open Source uses its proprietary Snyk Intel
vulnerability database to scan project manifest files, build a depen-
dency tree and detect vulnerabilities (Sharma et al., 2024). However,
existing SCA tools still struggle with complex software environments,
leading to issues such as inaccurate dependency resolution and false
positives in vulnerability detection (Zhao et al., 2023b; Wu et al., 2023;
Imtiaz et al., 2021; Jiang et al., 2024). Dietrich et al. (2023) showed
that shading and cloning operations significantly reduce the accuracy
of SCA tools, highlighting their weakness in handling dependency
modifications.

Despite extensive research on SCA tools, a comprehensive evalu-
ation that spans functionality and environmental complexity remains
absent. Prior studies often focus solely on vulnerability detection out-
comes (Prana et al., 2021), neglecting variations in dependency resolu-
tion and complex scenarios, or are limited to specific ecosystems (Zhan
et al., 2020; Jiang et al., 2024; Imtiaz et al., 2021) and program-
ming languages (Zhao et al., 2023b; Dann et al., 2021), which re-
duces their applicability in broader contexts. Our study addresses this
gap by jointly evaluating detection capabilities under realistic, cross-
dimensional conditions.

Zhan et al. (2020) investigated binary scanning approaches and
identified common steps in feature-based detection, covering aspects
such as version inference and obfuscation recovery. However, their
comparison was limited to tool-level scanning strategies and did not
analyze how different build forms within the same tool impact de-
tection outcomes. Our work extends this by comparing the stabil-
ity and effectiveness of the same SCA tool under both source-based
and binary-based modes, revealing internal inconsistencies that affect
accuracy.

Prana et al. (2021) conducted a comparative analysis of popular
SCA tools based on vulnerability detection and CI integration. They
found that even tools using the same database, such as Snyk and Red
Hat, report different vulnerabilities, indicating variations in algorithms
or implementation. We extend this work by examining how tool per-
formance changes under adversarial conditions like metadata poisoning
and dependency obfuscation, showing that most tools lack robustness
in such scenarios.

Unlike previous studies that rely heavily on average precision or re-
call, we introduce detection stability as a critical metric, using standard
deviation across datasets to assess the consistency of tool performance.
This reveals that tools with broader coverage often suffer from high
performance variance, a trade-off not captured by existing work.

Imtiaz et al. (2021) benchmarked nine SCA tools on OpenMRS, fo-
cusing on runtime, vulnerability count, and dependency tracking. While
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valuable, their study centered on a single application and lacked cov-
erage of multi-language support and adversarial behavior. In contrast,
our experiments span six datasets, including both curated real-world
projects and adversarially designed cases (e.g., DS3, DS5), which reflect
common patterns in real attacks such as SolarWinds and typosquat-
ting (Ohm et al., 2020; Martinez and Durén, 2021).

Zhao et al. (2023a) proposed a model to evaluate dependency
resolution in the Maven ecosystem (SSM), reporting average F1 scores
and accuracy limitations in the build and pre-build phases. While their
results provide insight into Maven-specific tool performance, our study
expands this to multi-language ecosystems and demonstrates that tools
often perform inconsistently when faced with language-specific build
systems and binary-only releases.

Overall, our contribution lies not only in aggregating detection re-
sults but in uncovering interaction effects between detection functions
and real-world scenarios—such as the observed degradation of license
recognition in binary mode, or the instability of vulnerability detection
under adversarial construction. This integrated view enables us to
distinguish between tools that merely function under ideal settings and
those capable of handling complex, evolving software supply chains.

7.2. Research on open-source dependencies, vulnerabilities, and license
detection

In research on open-source dependencies, vulnerabilities and license
detection, scholars have proposed various methods and tools to address
the security and compliance risks associated with OSS. Vulnerabilities
in open-source components often stem from TPLs or frameworks, typ-
ically due to coding errors, misconfigurations, or outdated dependen-
cies. For example, when the Apache Log4j2 vulnerability was disclosed,
it had a significant impact, affecting over 35,000 Java packages and
more than 8% of the Maven ecosystem (Zhao et al., 2023b; Wu et al.,
2023; Wetter and Ringland, 2021). The scope of these vulnerabilities is
broad, particularly when popular libraries are affected, as all projects
depending on those libraries are at risk (Zhao et al., 2023a).

To detect and mitigate these risks, researchers have proposed vari-
ous strategies and tools. Tang et al. (2022) introduced LibDB, a frame-
work for detecting TPLs in C++ binaries. LibDB includes three main
modules: the feature extraction module, which identifies basic and
function vector features from binary files and constructs function call
graphs; the fast detection module, which searches for candidate li-
braries in a local database using feature channels; and the FCG filtering
module, which compares the function call graphs of candidate libraries
and the detection target using a graph embedding network to filter out
incorrectly reported libraries (Tang et al., 2022). Similarly, Duan et al.
(2017) proposed OSSPolice, a tool for detecting dependencies in Java
and C/C++ binaries. OSSPolice generates software feature signatures
using syntactic features like string literals and functions and achieves
high scalability and accuracy through a hierarchical indexing scheme.
However, its performance is limited by control flow obfuscation (Duan
et al,, 2017). Additionally, Li et al. (2024) presented a method for
analyzing TPLs based on pre-built dependency graphs. By employing
a Common Platform Enumeration (CPE) transformation algorithm, this
method constructs localized dependency graphs, enabling teams to
perform TPL analysis and vulnerability scanning within their local
environments. Experimental results showed that this approach is effi-
cient while maintaining high precision. Zhang et al. (2018) introduced
LibPecker, which uses class dependencies as code features and employs
fuzzy class matching to identify TPLs. Although this method has high
time complexity during the feature matching phase, its similarity-
based feature calculation based on package structure provides valuable
insights for future research.

In vulnerability detection, Zhao et al. (2023b) conducted a large-
scale empirical study to explore dependency vulnerabilities. Using the
Veracode SCA tool, they analyzed 450 projects in Java, Python and
Ruby, revealing that “denial of service” and “information leakage” are
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common vulnerability types across these languages. They also found
that high-severity vulnerabilities are more frequent in Java and Python
projects. Additionally, the study showed that the number of direct de-
pendencies in a project has a greater impact on vulnerabilities than on
factors such as project age or commit frequency. Furthermore, Ivanova
et al. (2024) highlighted that even small metadata modifications can
significantly affect SCA tool detection, leading to false positives or
negatives.

In license detection, Zhao et al. (2023b) proposed an efficient and
accurate model for identifying license texts, which includes an extrac-
tion module and a recognition module. Experimental results demon-
strated that this model outperforms typical existing license detection
tools in terms of both accuracy and recall. However, current SCA tools
still fall short in license detection, especially in complex dependency
networks, where identifying which dependencies pose genuine risks
remains challenging (Dann et al., 2021).

Building on these findings, our study expands the evaluation scope
by incorporating six curated datasets across multiple dimensions, in-
cluding Java and binary dependencies, multi-language projects, com-
plex licensing, and adversarial scenarios. Unlike prior studies that
focused on a single detection capability (Tang et al., 2022; Zhao et al.,
2023b; Zhang et al., 2018; Ivanova et al.,, 2024; Dann et al., 2021),
our evaluation integrates dependency detection, vulnerability identi-
fication, and license recognition into a unified assessment using both
commercial and open-source tools. This approach enables a compre-
hensive examination of SCA tool performance under realistic conditions
that better reflect modern software development practices.

8. Conclusion

This study systematically evaluates the capabilities of SCA tools
in OSS governance by introducing a comprehensive evaluation model
covering dependency detection, vulnerability identification, and license
recognition. The framework focuses on multi-language ecosystems,
source and binary dependency tracking, and adversarial threat. Us-
ing standardized test sets and quantitative metrics, the results reveal
substantial performance gaps across tools and scenarios. While some
tools perform well in source-based, single-language settings, they of-
ten struggle in more complex scenarios. These challenging conditions
demonstrate that SCA tools are not yet ready to meet the demands
of real-world software supply chain environments. These findings sug-
gest that current SCA tools function as practical tools in idealized
conditions, but remain limited toys when exposed to the real-world
software supply chain risks. The study underscores the need for better
multi-language support, more reliable binary analysis, and stronger
resilience against evolving threats. Although it offers targeted recom-
mendations for tool developers, users, and researchers, the study has
certain limitations, including dataset diversity and tool selection con-
straints. Additionally, temporal factors and evolving attack techniques
may affect the generalizability of the results. Our future research will
prioritize enhancing SCA tool readiness for these challenging scenarios
to refine evaluation methodologies and improve tool effectiveness,
ultimately advancing OSS security and governance.
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