
Expert Systems With Applications 238 (2024) 121640

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Aligning XAI explanations with software developers’ expectations: A case
study with code smell prioritization✩

Zijie Huang, Huiqun Yu ∗, Guisheng Fan, Zhiqing Shao, Mingchen Li, Yuguo Liang
Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China

A R T I C L E I N F O

Keywords:
Code smell
Software quality assurance
Explainable artificial intelligence
Empirical software engineering

A B S T R A C T

EXplainable Artificial Intelligence (XAI) aims at improving users’ trust in black-boxed models by explaining
their predictions. However, XAI techniques produced unreasonable explanations for software defect prediction
since expected outputs (e.g., causes of bugs) were not captured by features used to build models. To set
aside feature engineering limitations and evaluate whether XAI could adapt to developers, we exploit XAI
for code smell prioritization (i.e., predicting criticalities of sub-optimal coding practices and design choices),
whose features could capture developers’ major expectations. We assess the gap between XAI explanations
and developers’ expectations in terms of (1) the accuracy of prediction, (2) the coverage of explanations on
expectations, and (3) the complexity of explanations. We also narrow the gap by preserving the features related
to developers’ expectations as much as possible in feature selection. We find that XAI can explain smells with
simpler causes in top 3 to 5 features. Complex smells can be explained in around 10 features, which need
more expertise to interpret. Selecting features adapting to the developers’ expectations improves coverage by
5% to 29%, with almost no negative impact on accuracy and complexity. Results also highlight the need of
dividing coarse-grained prediction targets and developing fine-grained feature engineering.
1. Introduction

Software Quality Assurance (SQA) optimizes software development
and maintenance by distributing limited quality assurance resources
to the riskiest software modules. Machine learning approaches were
proposed to support SQA decision-making, and they achieved ideal
results in major tasks such as defect prediction and code smell identifi-
cation. Compared with the significant progress in prediction, explaining
why and how such predictions are made is still a less focused topic in
academia but an important concern of practitioners (Jiarpakdee et al.,
2022). In addition, it is the right of AI system users to know how
predictors behave (Perera et al., 2019). Finally, transparency of models
can improve users’ trust (Papenmeier et al., 2022) on AI models, and
thus their usage could be promoted.

Recent work reported eXplainable Artificial Intelligence (XAI) ap-
proaches could generate stable explanations in a typical SQA task,
i.e., defect prediction (Rajbahadur et al., 2022). Although most devel-
opers regarded such explanations as helpful, they may still be impracti-
cal due to the misalignment with developers’ expectations on XAI (see

✩ This work was partially supported by the National Natural Science Foundation of China (No. 62372174), the Natural Science Foundation of Shanghai, China
(No. 21ZR1416300), the Capacity Building Project of Local Universities Science and Technology Commission of Shanghai Municipality, China (No. 22010504100),
the Research Programme of National Engineering Laboratory for Big Data Distribution and Exchange Technologies, China, and the Shanghai Municipal Special
Fund for Promoting High Quality Development, China (No. 2021-GYHLW-01007).
∗ Corresponding author.
E-mail addresses: hzj@mail.ecust.edu.cn (Z. Huang), yhq@ecust.edu.cn (H. Yu), gsfan@ecust.edu.cn (G. Fan), zshao@ecust.edu.cn (Z. Shao),

lmc@mail.ecust.edu.cn (M. Li), ygliang@mail.ecust.edu.cn (Y. Liang).

Section 3.1 for an example). The expectations include (1) allocating
SQA resources, (2) understanding and explaining the cause related to
defects, and (3) understanding why a prediction is made. Recent work
of Aleithan (2021) revealed that XAI generated unreasonable explana-
tions compared with the expected outputs, i.e., the root causes of bugs
are missing for the up-mentioned expectation (2), and they abandoned
the XAI-based explanations. From this example, we learned a lesson
that assuring disruptiveness (Maltbie et al., 2021) and soundness of
explanation is not enough to make it trustworthy, even if they could
contribute significantly to expectations (1) and (3). If the explanation
fails on expectation (2), the huge gap between XAI explanation and
users’ expectations will still result in mistrust and low acceptance of
results. Nevertheless, we notice that the root causes of bugs are not
captured by the features used to train the models, and thus XAI could
never output an unknown factor. Consequently, under the condition of
appropriate feature engineering, the potential of XAI is still unclear.
This leads to our research goal of investigating how well can XAI
vailable online 27 September 2023
957-4174/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.eswa.2023.121640
Received 24 May 2023; Received in revised form 2 August 2023; Accepted 13 Sept
ember 2023

https://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:hzj@mail.ecust.edu.cn
mailto:yhq@ecust.edu.cn
mailto:gsfan@ecust.edu.cn
mailto:zshao@ecust.edu.cn
mailto:lmc@mail.ecust.edu.cn
mailto:ygliang@mail.ecust.edu.cn
https://doi.org/10.1016/j.eswa.2023.121640
https://doi.org/10.1016/j.eswa.2023.121640
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2023.121640&domain=pdf

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.
techniques generate explanations that meet their expectations, and how
can we improve them.

If expected explanations can be generated, instead of abandoning
this line of research, we should develop more advanced feature extrac-
tion approaches specifically for XAI to generate comprehensive features
that incorporate developers’ expectations. However, the research goal
can hardly be fulfilled in the context of defect prediction. First, present
feature engineering approaches for defect prediction can barely capture
the root causes of bugs. Second, we do not have a dataset including de-
velopers’ perceptions of the root causes of defects or their expectations
of explanations.

Apart from defect prediction, there exist various other SQA tasks
using similar techniques, i.e., generating product and process met-
rics as features to build machine learning predictors. Code smells are
sub-optimal code implementation and design choices that can hinder
software maintainability and reliability in the long run. Practitioners
need to focus on removing the worst code smells in advance using
limited SQA resources. However, smell detection tools may produce an
excessive number of results. Due to the high cost of manual inspection
of all suspicious candidates, both rule and machine learning based
code smell detectors were perceived as unhelpful by practitioners (Sae-
Lim et al., 2018a). To discard trivial detection results, prior studies
built machine learners capturing structural (e.g., coupling, cohesion,
complexity) and contextual (e.g., error-proneness, change history, de-
veloper) information to rank the results. Pecorelli et al. (2020) further
proposed a developer-driven approach to prioritize 4 code smells.
Despite introducing new features, the study also collected comments
and manual prioritizations from original developers. We think the study
of Pecorelli et al. (2020) is more ideal as the context of assessing the
capability of XAI for generating outputs that developers expected for
the following 3 reasons. First, the reason why smells are prioritized
by humans could be captured by the features used to build models.
Second, the original developers provided detailed comments on why
they prioritized the code. Third, prior work of Yedida and Menzies
(2022) also used code smell as an alternative to defect prediction to
validate their conclusion for SQA and software analytics because of
the high relativeness and similarity in technical details and purposes
of these two tasks.

We intend to investigate whether we can align XAI explanations
with developers’ expectations for code smell prioritization. First, we
summarize and categorize the developers’ comments to find out their
major concerns toward code smells’ criticality and determine their
expected XAI output. Then, we build a prediction model and generate
explanations using an XAI approach called SHapley Additive exPla-
nation (SHAP). Afterward, we assess whether inspecting a reasonable
number of the most important features in XAI explanations could
cover most developers’ concerns. Furthermore, we also improve feature
selection according to the developers’ primary concerns to narrow the
gap between XAI explanations and developers’ expectations.

The major contributions of our work include:

• We summarize the concerns of developers related to their
decision-making toward code smell criticality, including code
design and implementation, code evolution, code functionality,
and developer-related factors.

• To our knowledge, we propose the first work that quantifies the
gap between XAI explanation and developers’ expectations in
code smell prioritization. The expectation could be huge even if
all their concerns are captured by the features, e.g., more than
40% of the concerns of the developers do not appear in simple
explanations.

• We discover that the gap could be narrowed to an acceptable ex-
tent by adapting to developers’ when selecting features, i.e., pre-
serving the features related to the major concerns of developers
2

as much as possible.
• We conclude that if the gap is narrowed, inspecting the top 3 to
5 important features is sufficient to meet the developers’ expec-
tations in explaining issues with simpler causes such as Spaghetti
Code, but the explanation may be less helpful for novice users
in issues with complex or controversial causes such as Shotgun
Surgery.

• We outline the challenges and opportunities of XAI for code smell
prioritization and SQA in terms of feature engineering, problem
definition, and XAI methodologies.

The rest of this paper is organized as follows. In Section 2 we sum-
marize related work. Section 3 presents the background and an example
that motivates this study. Section 4 introduces the dataset as well as
our manual categorization of developers’ comments. In Section 5 we
propose research questions and describe the experimental settings. In
Section 6 we present the results of the experiment, while Section 7
discusses the implications of our study. Section 8 overviews the threats
to the validity and our effort to cope with them. Finally, Section 9
concludes the paper and describes future research. The replication
code1 and online demo2 are available as GitHub repositories.

2. Related work

This section summarizes the studies related to code smell detection,
prioritization, and XAI applications in SQA.

2.1. XAI research in SQA

In recent years, explainable artificial intelligence (XAI) has gained
significant attention from the research community due to its potential
to enhance transparency and trust in machine learning models. Since
regulations and developers (Jiarpakdee et al., 2021; Perera et al.,
2019) demand explanations from the predictions made by black-boxed
models, XAI has become a major concern in SQA practice.

Not all models are eligible for generating XAI results due to data
preprocessing and model performance issues, and generating appropri-
ate models for XAI should meet certain standards. Tantithamthavorn
et al. have conducted an empirical investigation into the impact of
various, including class rebalancing (Tantithamthavorn et al., 2020),
parameter tuning (Tantithamthavorn et al., 2019), and feature selec-
tion (Jiarpakdee et al., 2020), on the performance and interpretability
of defect prediction models. Based on their findings and the relevant
literature, it is recommended that practitioners adhere to certain em-
pirical guidelines when constructing a reliable prediction model that
provides clear explanations. Firstly, multicollinearity should be reduced
through appropriate feature selection techniques. Secondly, the model’s
performance should exceed a certain threshold, such as an area under
the receiver operating characteristic curve (AUC-ROC) of greater than
0.7, to ensure its reliability. Finally, data resampling should be avoided
to minimize any potential biases and to ensure generalizability. By
following these guidelines, practitioners can develop defect prediction
models that are both accurate and interpretable, ultimately leading to
better decision-making and increased trust in machine learning models.

After generating models, suitable XAI approaches should be applied
to generate reliable explanations. The validity of explainable artificial
intelligence (XAI) techniques has been explored in various studies.
For instance, Rajbahadur et al. (2022) discovered that a high level of
agreement between the feature importance generated by a Classifier
Agnostic (CA) approach such as SHAP (Lundberg & Lee, 2017) and the
Classifier Specific (CS) method can only be achieved if multicollinearity
is eliminated. Conversely, Jiarpakdee et al. (2022) found that most
developers found the feature importance generated by another CA ap-
proach (i.e., LIME Ribeiro et al., 2016) useful. Our research (Yang et al.,

1 https://github.com/SORD-src/ESWA23.
2 https://github.com/SORD-src/ESWA23_demo.

https://github.com/SORD-src/ESWA23
https://github.com/SORD-src/ESWA23_demo

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.
Table 1
An overview of code smell detection and prioritization researches and their used features (Y is for Yes, and N is for No)

Study Task Approach Smells detected Used metric/Feature types

Blob Spaghetti
Code

Complex
Class

Shotgun
Surgery

Structure Compre-
hension

Functionality Evolution

Lanza et al. (2005) Detect Rule Y N Y Y Y Y N N
DECOR (Moha et al., 2010) Detect Rule Y Y N Y Y Y Y(Class Names) N
JDeodorant (Fokaefs et al., 2011) Detect Rule Y N N N Y N N N
Fontana et al. (2015) Detect Rule Y N N Y Y Y N N
HIST (Palomba et al., 2015) Detect MSR Y N N Y N N N Y
TACO (Palomba et al., 2016) Detect IR+Rule Y N N N N N Y(Textual Similarity) N
SMAD (Barbez et al., 2020) Detect ML (Ensemble) Y N N N Y Y Y(DECOR) Y(HIST)
Alazba and Aljamaan (2021) Detect ML Y N N N Y Y N N
Sharma et al. (2021) Detect DL N N N N N N Y(Word Vectors) N
Liu et al. (2021) Detect DL Y N N N Y Y Y(Word Vectors) N
Kovačević et al. (2022) Detect DL Y N N N Y Y Y(Code Representation) N
Sae-Lim et al. (2018a) Prioritize IR Y N N Y N N Y(Textual Similarity) Y
Guimarães et al. (2018) Prioritize Rule Y N Y Y Y N N Y
KBS (Fontana & Zanoni, 2017) Prioritize ML Y Y Y Y Y Y N N
MSR (Pecorelli et al., 2020) Prioritize ML Y Y Y Y Y Y N Y
2021) on Just-In-Time defect prediction models also revealed a high
level of agreement among several established CA approaches, including
LIME, SHAP, and BreakDown (Gosiewska & Biecek, 2019). However,
there have been concerns regarding the validity of XAI outputs, such
as the disagreement in feature, rank, and sign between LIME and SHAP
explanations (Er et al., 2022). Gao et al. (2022) measured the effec-
tiveness of defect predictors’ local explanations by assessing their local
faithfulness and explanation precision. They found such explanations
are better than random guessing, and they are not ideal for deep learn-
ing based approaches. Recent studies in other domains of XAI have also
suggested that the validity concerns regarding faithfulness (Papenmeier
et al., 2022) and soundness (Kulesza et al., 2013) may not necessarily
translate to meaningfulness in the eyes of users. Therefore, it is crucial
to calculate feature importance using established CA approaches and
to ensure that the results are sound and stable. However, generating
reliable results is not enough for developers to accept and trust the
model outputs. More research is needed to identify the factors that
contribute to user acceptance and trust in XAI explanations.

Based on the transparency brought by XAI, apart from explaining
models, XAI has more practical uses in SQA. In terms of actionabil-
ity, Rajapaksha et al. (2022) proposed a planner for SQA using model
explanation techniques in order to be responsive to the practitioners,
i.e., telling developers how to react to reduce the error-proneness of
a class. In terms of building more accurate models, dos Santos et al.
(2020) used SHAP to explain defect predictors, and they achieved
better performance with simpler models built with the most important
features of SHAP explanations. Similarly, Zheng et al. (2022) exploited
LIME to explain the built Just-In-Time defect prediction model, they
picked the most important features and achieved 96% of the predictive
model’s original capacity at 45% of the original effort. Widyasari
et al. (2022) proposed XAI4FL to enhance spectrum-based fault local-
ization by inferring the importance of each program unit and their
suspiciousness using SHAP and LIME.

2.2. Machine learning in code smell detection and prioritization

The term code smell was first empirically introduced by Fowler
et al. (1999) to describe anti-patterns in software development. Most
research on code smell detection is aimed at assessing such observa-
tions of smells on Java projects. We list some works of code smell
detection and prioritization from established software engineering and
machine learning venues in Table 1. The used approaches include
rule (i.e., combinations of customizable metrics and thresholds), MSR
(Mining Software Repository), IR (Information Retrieval), ML (Machine
Learning), and DL (Deep Learning). To clarify, although DL is a kind of
ML approach, it is separated from ML in this table because their feature
extraction and model training processes could be extremely different.
3

To compare the source of information they used for prediction, we also
summarize whether 4 types of metrics and features are presented in
these works. The detailed definition of metric types will be discussed
in the upcoming sections (i.e., Section 4.3 and Table 4). Most code
smell works are metric-based, for example, the structure (e.g., cohesion
and coupling) and comprehension (e.g., complexity) features are mostly
extracted from source code ASTs (Abstract Syntax Tree), and evolution
features are calculated by mining historical information of software
repositories. However, unlike the other 3 types of features, the function-
ality features could be generated from multiple sources of information.
The functionality of code may either be judged by its class or method
names, or be represented by word and code embeddings. Moreover,
some work also exploits textual similarity approaches to locate code
fragments with similar functionalities.

2.2.1. Considered features and aspects in code smell research
The most commonly considered aspect in code smell studies is

code quality. Moha et al. (2010) proposed DECOR using Rule Cards
(i.e., a set of customizable rules with code metrics and thresholds
presented in a file). Lanza et al. (2005) outlined detection approaches
as well as thresholds statistically calculated in commercial systems.
Furthermore, Fokaefs et al. (2011) developed JDeodorant aiming to
detect and refactor code smells at the same time with the help of
Integrated Development Environment (IDE) plugins. Based on these
tools, Fontana et al. (2015) proposed various intensity indexes for code
smells using combinations of code metric values. Furthermore, Fontana
and Zanoni (2017) proposed the compared baseline study of Pecorelli
et al. (2020) using pure code metrics as features to predict code smell
severity, which will be described in Section 4.2.1.

Code change histories are considered in the detection and priori-
tization of certain code commit-sensitive smells, and such approaches
were proposed to cope with the shortage of code metrics by ignoring
the context of the examined code components. Palomba et al. (2013,
2015) proposed HIST to capture historical changes in software systems,
and they outperformed pure code analysis techniques in 5 code smells
including Blob and Shotgun Surgery.

Semantic conceptions are also considered in smell detection.
Palomba et al. (2016) designed an Information Retrieval based ap-
proach called TACO to capture textual smells, further research
(Palomba et al., 2018) showed textual smells are significantly different
from the structural ones.

Developers’ perceptions are also considered since code smell pres-
ence may vary due to different developers’ preferences. Guimarães
et al. (2018) and Vidal et al. (2016) prioritized code smells and their
agglomerations according to developers’ preference (e.g., prefer to
improve coupling or cohesion), their impact on software architecture,

agglomeration size, and change histories. Sae-Lim et al. (2017a, 2018b)

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.

A
p
f
b
(
a
t
i
u
s
d
(
t
a

i
w
2
e
d
w
c
f
u
p
c

investigated the developers’ perceptions toward code smell priority,
and they revealed that task relevance and smell severity were the
most important factors. Thus, they built prioritizing models (Sae-Lim
et al., 2016, 2017b; Sae-Lim et al., 2018a) capturing context-based
information from Issue Tracking Systems (ITS) using IR-based textual
similarity between issue reports and code components. Since their
primary concern for prioritization was task relevance (i.e., code related
to more issue reports is more important), they validated the results
using a strategy of evaluating recommending system (e.g., measuring
nDCG as task relevance) and manual verification.

Pecorelli et al. (2020) combined most of the up-mentioned aspects,
e.g., structural code metrics and process metrics of software systems to
measure the code smell priority. More details of Pecorelli et al. (2020)
will be introduced in Section 4.2.1.

2.2.2. Machine learning approaches for code smell studies
Ichtsis et al. (2022) discovered that the results of rule- and

threshold-based detection tools have a low agreement, even for simple
code smells. Since most of the up-mentioned approaches are threshold-
dependent, researchers intend to explore if threshold-free machine
learning could detect code smells.

To jointly consider the detection results of multiple detectors, Bar-
bez et al. (2020) proposed a machine-learning based ensemble method
to aggregate the results of various classical detectors such as HIST,
DECOR, and JDeodorant. The model is evaluated on a mixture of ex-
isting manually detected datasets, and it outperformed other baselines
using ensemble learning.

Another line of machine learning work used the QUALITUS dataset.
recent study by Alazba and Aljamaan (2021) suggested their ap-

roach stacking basic classifiers and could achieve nearly perfect per-
ormance. However, they used a dataset generation strategy criticized
y Di Nucci et al. (2018). Azeem et al. (2019) and Di Nucci et al.
2018) found potential flaws of the dataset construction (e.g., biased
nd impractical dataset, the lack of process metrics) and validation
echniques (e.g., the absence of metrics such as AUC-ROC which are
nsensitive to data distribution). In response, Jain and Saha (2021)
sed the modified dataset of Di Nucci et al. (2018) with hybrid feature
election, data balancing, and ensemble learning approaches which
rastically improved performance. Recently, Lewowski and Madeyski
2022) also pointed out the reproducibility issues of code smell predic-
ion studies such as unknown data sources, inexperienced annotators,
nd the lack of replication package.

Deep learning methods were criticized since they were hard to
nterpret (i.e., black-boxed), and achieved limited or no improvement
hile consuming a lot more computational resources (Fakhoury et al.,
018). However, since they could save the effort of tedious feature
ngineering, researchers were still actively improving them. While the
ataset used in other types of studies is not sufficient for training
ell-performed deep learners, Sharma et al. (2021) used an automatic

ode smell detector called Designite to generate a ground truth dataset
or detection, and built a token-based code smell prediction model
sing deep learning and transfer learning. Liu et al. (2021, 2018)
roposed deep learning approaches using CNN and RNN to detect 4
ommon smells including Feature Envy, Long Method, Large Class, and
Misplaced Class. Meanwhile, they proposed a data generation strategy
(e.g., randomly moving methods) based on real-world projects, which
coped with the data-hungry problem of deep learners. However, the
strategy is not feasible for generating data for more complex smells
such as Shotgun Surgery. Kovačević et al. (2022) detected Long Method
and God Class using pre-trained code embedding as features, and they
outperformed metric-based machine learning predictors in terms of the
performance in minority (smelly) classes. Their work is the first study
to prioritize the smelly instances from the MLCQ dataset (Madeyski
& Lewowski, 2020), which is collected from experienced third-party
developers. Kovačević et al. (2022) also suggested inconsistencies and
the lack of data annotation criteria in datasets should be addressed in
4

further studies for better performance.
2.3. Code smell based defect prediction

The emergence of code smell indicates code maintenance degra-
dation, which is closely related to code bug-proneness. Thus, code
smell could be used for bug prediction. Taba et al. (2013) proposed
antipattern(smell)-based metrics to predict bugs, and they found some
antipatterns are related to higher bug density. Palomba et al. (2019)
involved various code smell intensity indexes as predictors of bugs,
integrated them into existing bug prediction models, and achieved
ideal results. The authors also evaluated feature importance using
Information Gain and they found code smell intensity is a significant
contributing feature. Furthermore, through a systematic literature re-
view, Piotrowski and Madeyski (2020) concluded that code smells and
their intensities are good indicators of bugs, God Class, God Method,
and Message Chains are useful smells for prediction. Recently, Sotto-
Mayor et al. (2022) compared design code smells with traditional
code smells in defect prediction, and they discovered that involving
design smells extracted by Designite could boost model performance.
Their study (Sotto-Mayor & Kalech, 2021) also evaluated code smell
based defect prediction in the context of cross-project prediction, and
using code smells alone performs better than the combination of other
categories of features (e.g., smell and code metrics).

These studies reveal the potential of connecting code smell research
with other SQA topics such as defect prediction. However, to achieve
this goal, there still lacks research that explains how bugs are triggered
by code smells from the perspective of XAI.

3. XAI explanations and developers’ expectations

The main reason that practitioners want explanations from XAI is
to (1) filter to a small set of causes to simplify their observation,
and (2) generalize these observations into a conceptual model where
they can predict and control future phenomena (Wang et al., 2019).
Accordingly, we infer the main characteristic of code smell prioritizers
should include (1) accurately prioritizing detection results according
to developers’ concerns to limit the number of files to inspect, and
(2) explaining which factors are making a smell more critical or triv-
ial. These advantages could enforce developers’ trust in results, and
save efforts on code comprehension. The first goal has been a major
research direction for decades, and researchers achieved good results
recently (Pecorelli et al., 2020). The second goal, however, is less
frequently pursued and discussed. This section aims at clarifying the
second goal.

3.1. An example of misalignment in explanation and expectation in defect
prediction

Aleithan (2021) predicted a buggy instance of LINUX and explained
the instance using CA approach. The prediction is correct and readable.
The explanation is demonstrated in the inset (a) of Fig. 1. It mainly
consists of the identifier and the syntax features of the expression. How-
ever, this example reveals a drawback of this approach. Further manual
analysis shows that the bug is nothing about syntax or identifier, but
actually related to an incorrect API usage, which is completely different
from the explanation.

Based on the up-mentioned CA approach, Tantithamthavorn et al.
(2021) further constructed an actionable advisor for refactoring buggy
files. The output is demonstrated in inset (b) of Fig. 1. This advisor
aimed at responding to the developers’ expectations of ‘‘stop telling
them what it is (why a prediction is made)’’ and ‘‘telling them what to
do’’ to improve defect-prone classes. The advice is generated by focus-
ing on the most important features in explanations. They provided the
actual value of these features, and the ideal value of these features that
may lead to a reduction of bug-proneness predicted by the classifier.

However, this approach is also affected by the up-mentioned drawback,

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.
Fig. 1. Output of XAI approaches of defect prediction.
since information such as ‘‘API misuse’’ is not involved in the feature
set.

Practically, we applaud the motivation of building actionable expla-
nations. However, under the condition that the most relevant problems
that trigger bugs are not captured by the features, we believe develop-
ers like (Aleithan, 2021) will be unlikely to trust this model. A similar
point of view is proposed by Antinyan (2021) from Volvo Car Group.
The author argued that irrespective of how good a predictor is, its usage
should not be encouraged if it is misleading.

Recent advances in XAI made it possible to faithfully reflect how
SQA model behaviors in most cases (Gao et al., 2022). However, the up-
mentioned example showed that faithfulness (i.e., the ability to reflect
the models’ behavior) (Papenmeier et al., 2022) and soundness (Kulesza
et al., 2013) are not necessarily correlated with the users’ acceptance
and trust of tools.

From our understanding, the cause of the problem is the expla-
nations are not really expected by developers. Developers prefer the
root causes to be presented in explanations, and thus they could make
actionable decisions based on these explanations. If a model is built
with features irrelevant to the root causes of defects, it may not be
suitable for providing explanation to developers, no matter how well
it performs. Currently, misalignment is unavoidable in general defect
prediction since defects have complex and diverse causes, and present
feature extraction and code comprehension methods can hardly capture
them. However, for tasks like code smell prioritization, we can nar-
row our focus to the design, functional, and historical characteristics,
i.e., the root causes of smells concerned by developers. We can thus in-
vestigate under the condition of effective feature engineering, whether
XAI could explain SQA models. After closing the gap, we expect to see
a deeper trust between users and XAI tools, as well as a wider adoption
of XAI approaches in helping developers to find actionable solutions for
SQA problems.

3.2. Outlining explanation and expectation

In the context of this paper, an explanation consists of (1) feature
importance revealing the behavior of the model, and (2) the predicted
criticality demonstrating the model decision. Explanations could be
either factual or counterfactual. Factual explanations output why a pre-
diction is made, and counterfactual ones output why a prediction is not
made. We use factual explanation because (1) factual explanations are
helpful for explaining correct predictions, and we are building a well-
performed model (2) the appropriate way to exploit and understand
counterfactual explanations is still unclear (Riveiro & Thill, 2021).

To compare the developers’ expectations with the generated expla-
nations, we outline the users’ expectations as (1) whether the models
behave as expected, which is described in developers’ comments on
5

why they prioritized every smell, and (2) whether the models’ de-
cisions are consistent with theirs. We use the developers’ comments
as their expectations on XAI explanations, because (1) human-alike
and human-friendly explanations are helpful in improving explainabil-
ity and building trust between human and machine, especially for
XAI (Ambsdorf et al., 2022), and people preferred the explanations con-
sistent with their prior knowledge (Maltbie et al., 2021), (2) the original
developers were acting as experienced independent prioritizers, and
they were not influenced by bias such as backward reasoning (Wang
et al., 2019), thus their comments are reliable for evaluation.

3.3. Motivating example

Fig. 2 depicts an example of XAI’s output of code smell prioritization
and the process of matching the output with developers’ expected ex-
planation. The example is extracted from an open-source project called
Jackrabbit,3 and the class is affected by the Spaghetti Code smell. Assum-
ing that a developer has not yet inspected the smelly class, a waterfall
plot generated by SHAP will be presented. The developer may check
the explanation of prediction in the waterfall plot if he or she is not
confident about the decision, or if he or she intends to save effort when
inspecting the class. The red bar (ends with a right arrow) indicates
the positive contribution of a feature to the predicted class, and the
black bar (ends with a left arrow) represents the negative contribution.
The length of the bar represents the extent of the contribution (longer
is higher). To avoid backward reasoning, the model-predicted severity
will be demonstrated later only if a preliminary human decision is
made. Since the model uses multiple features for prediction, only top-𝐾
(𝐾 = 10) important features will be demonstrated to avoid information
overload. For the example class in Fig. 2, the developer commented
the methods of this class are overly long and complex, and labeled it as
MEDIUM severity. In the scope of this paper, an explanation includes
(1) the predicted severity, (2) the importance of top-𝐾 features that
clarifies the reason that the prediction is made. We build an accurate
prioritizer and exploit SHAP to generate local explanation for the
MEDIUM prediction in the left part of the figure, and the features are
ordered in descendant by importance. In the right part of the figure,
we extract the aspects (codes) mentioned in the developer’s comment
(i.e., size and complexity highlighted in yellow and green) to check if
they appear in the top-𝐾 features (e.g., the features ringed by yellow
and green squares). Finally, we generate a matrix to check if each
aspect presents in comments and explanations. Further approaches to
measuring the gap between explanations and expectations are assessed
will be introduced in Section 5.2.

3 https://github.com/apache/jackrabbit.

https://github.com/apache/jackrabbit

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.
Fig. 2. An example of XAI’s output and the process of matching it with developer’s expectation.
Fig. 3. Demonstration of data collection and experimental process.
4. Dataset construction and developer comment categorization

Fig. 3 demonstrates the data collection and experimental process.
This section describes the dataset we used and our manual catego-
rization of developers’ comments (i.e., the left and the middle part of
Fig. 3).

We conduct our study based on a recent work (Pecorelli et al., 2020)
of code smell prioritization which proposed a developer-driven and
machine learning based approach to rank 4 code smells. The dataset
of Pecorelli et al. (2020) includes the ratings from original developers
and their explanative comments about why they assign such criticality.

We use this dataset because (1) it is collected from original de-
velopers, since identifying code smell requires developers’ experience
6

on target projects (de Mello et al., 2022), it is more reliable than
the other datasets (Fontana & Zanoni, 2017; Madeyski & Lewowski,
2020) collected from third-party developers and researchers, (2) it
includes detailed comments on rated criticality for further analysis, and
to our knowledge, such feedback is not collected in other prioritization
datasets, and (3) it has significant academical impact, e.g., cited 44
times in 3 years according to Google Scholar,4 produced by the most
influential scholars in code smell research (Sobrinho et al., 2021), and
published in a major venue (MSR’20) focusing on mining software
repository.

4 Data retrieved in July 16, 2023.

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.
Table 2
Keywords used to generate class functionality features.

Feature name Description Keywords

is_controller Whether the class is a controller class (Moha et al., 2010). manage, process, control, ctrl, command, cmd, process, proc,
ui, drive, system, subsystem, parser, service

is_procedural Whether the class contain procedural (Moha et al., 2010) instructions. make, create, factory, exec, compute, display, view,
calculate, batch, thread, cluster

is_test Whether the class is a test class or it is designed to facilitate testing. test, junit

is_util Whether the class is a utility (Palomba et al., 2014) class. util, helper

is_external Whether the class is extrinsic (Rodríguez-Pérez et al., 2022) or copied from other systems. org.tartarus.snowball.ext, org.apache.tools.bzip2r
i
v
e
a
t

4.1. Dependent variables: The criticality of 4 code smells

The 4 smells concerned are class-wide design problems related
to coupling, cohesion, and complexity. They cause a high cognitive
load for developers to comprehend, maintain, and refactor the code.
According to Pecorelli et al. (2020), they were common and can be
accurately assessed by developers with respect to their criticalities.

Blob (or God Class) refers to classes with low cohesion and do not
follow the single responsibility principle. Blobs could be detected by
cohesion code metrics such as LCOM5 (Lack of COhesion of Method)
(Moha et al., 2010) and size metrics such as WMC (Weighted Method
Count) (Palomba et al., 2019).

Complex Class refers to classes with high complexity, e.g., too
many loops and conditional control statements. Complex Classes could
be determined by complexity code metrics such as CYCLO (Brown et al.,
1998) and code readability (Buse & Weimer, 2010).

Spaghetti Code refers to classes that do not follow Object-Oriented
Programming (OOP) principles, e.g., a container of long methods that
do not interact with each other. Spaghetti Code could be detected by
size metrics such as LOC (Line of Code) as well as the absence of
inheritance (Moha et al., 2010).

Shotgun Surgery refers to classes that frequently trigger co-changes
of other classes. Shotgun Surgery is caused by high coupling. However, it
can be better detected by historical change information (Palomba et al.,
2015) rather than code metrics.

The developers’ perceived criticalities of the MSR paper (Pecorelli
et al., 2020) originally ranged from 1 to 5. Since the margins of
criticality levels {1, 2} and {4, 5} were not clear, the MSR paper merged
the unclear criticalities to 3 new criticalities, i.e., {NON-SEVERE,
MEDIUM, SEVERE}. Thus, the prediction was performed over the
merged criticalities, and the dependent variables are the 3-leveled
criticalities of the up-mentioned 4 smells.

4.2. Independent variables: Datasets and extension

To ensure better coverage of developers’ concerns, we merge the 2
datasets (i.e., the MSR dataset and the dataset generated by the tools
employed by the KBS paper). These datasets capture characteristics
in structural and development process aspects of smelly classes to
generate independent variables for prediction. The complete list of used
features is available in the Appendix (Table 19).

4.2.1. The MSR and KBS code smell prioritization datasets
The authors of the MSR paper tracked commits of 9 established

projects of Apache and Eclipse open-source foundations in 6 months.
They used rule-based detectors to identify code smells daily, and they
manually discarded false positives. Afterward, they sent emails to the
original developers to collect their perceptions of the criticality of
smells as soon as possible. Finally, they received 1332 instances almost
equally distributed among the 4 smells. They also provided an online
appendix5 containing the original developers’ comments. To perform

5 https://figshare.com/s/94c699da52bb7b897074.
7

prediction, the authors generated 20 dependent variables including
product, process, developer-oriented, and code smell related features.
However, their replication package only includes a subset of the fea-
tures, and 6 features (i.e., EXP, OWN, NR, CE, Intensity, and
Refactorable) are missing from the public version of the dataset.
We sent e-mails to all authors of Pecorelli et al. (2020) on March 10,
2022 and asked for a complete copy of dataset as well as the commit id
of the measured code components, but we did not receive any response.
Moreover, we cannot replicate the 6 features because the commit ids
are not available in the dataset, and thus we can hardly locate the exact
commit they used to generate features. Nevertheless, the goal of our
study is not to replicate their work, and the missing features are trivial
according to the MSR paper. Thus, ignoring the missing features will
not greatly impact our conclusion.

To compare the models built with the proposed features and the
pure code metrics, the MSR paper used the KBS methodology as a
baseline. They applied the dataset generation method of the original
KBS paper to construct the baseline based on the 9 projects used in
the MSR paper. The features of the baseline were 61 pure code metrics
in 3 granularities including class, package, and project. Method level
metrics were discarded since method smells were not considered. The
aspects assessed by these features include size, complexity, coupling,
inheritance, and encapsulation.

4.2.2. The extension of class functionality features
Based on class names, we extend 5 features concerning the type

and context of the measured classes including is_test, is_util,
s_controller, is_procedural, and is_external. The moti-
ation for involving these contextual features is driven by the develop-
rs’ comments in this dataset (e.g., some developers commented it is just
test, it is good to have large tests and assigned NON-SEVERE priority

o Blob tests, and some developers ignored Spaghetti Code smells of
utility classes). Thus, we think these features should also be included for
prediction. They are generated by checking if lower-cased class names
contain keywords in Table 2. The keywords of the first 4 features are
extracted from (1) a state-of-the-art code smell detection tool called
DECOR (Moha et al., 2010), (2) relevant words in the class names of the
dataset. The keywords of is_external are extracted from package
names of the smelly classes because some projects directly copy third-
party classes into their projects (which is not a good practice), and
developers perceived code smells in such classes as irrelevant.

4.3. Developers’ comments and our manual categorization

The online appendix6 of the MSR paper contains comments from
original developers describing their attitudes toward the criticality of
every code smell instance. However, we find 5 comments were missing
from the relevant folder named after code smells, and thus they are
discarded from model explanation.

We follow these steps to summarize and categorize the comments
of developers:

6 https://figshare.com/s/94c699da52bb7b897074.

https://figshare.com/s/94c699da52bb7b897074
https://figshare.com/s/94c699da52bb7b897074

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.

r
r
d
f
o
i
m
c
T
b
m
n
g
a

Table 3
The mentioned concerns in developers’ comments.

Core Category Sub-category Code Keyword Examples Corresponding Features

design & impl. (88.51%)

structure (31.47%)
cohesion (3.72%) cohesion, related, coherence LCOM5, C3, TCC
coupling (11.17%) coupling, external, request CBO, MPC, ATFD, CFNAMM,

FANOUT, RFC
size (17.56%) long, large, huge, blob, loc WMC*, num*, NO*, LOC*, NMO

comprehensibility (36.89%) complexity (34.76%) complex, simplify, confuse WMC*,Read.,WOC,DIT,NIM
documentation (2.75%) (lacks) documentation, messaging

N/A (not captured)refactorable (21.60%) chance (18.04%) refactor, improve, restruct
approach (3.96%) reduce (complexity), divide

redundancy dead code dead
code clone duplicate, repetitive

general design (10.11%) design (8.98%) pattern, structure, terrible, suck
N/A (too generalized)purpose (1.13%) goal, responsibility, objective

impl. (14.72%) impl. (14.72%) call, loop, parameter

functionality (11.25%) testing (5.58%) testing (5.58%) test is_test

production (5.66%) production (5.66%) factory, service, batch, util(ity) is_util,is_controller,
is_procedural,is_external

evolution (16.18%)

history change (11.25%) change (10.28%) change, modify, maintain AVG_CS,NC,NF,NCOM,
DSC,Persistencebug-proneness (1.54%) bug, defect, flaw

current impact (2.67%)
importance (2.18%) priority, importance, critical

N/A (not captured)

code deprecation legacy, old, deprecated
risk risk(y to refactor)

future delivery (5.50%) time constraint (5.50%) deliver (pressure), asap, postpone

developer community discussion discuss, agreement
organization organization

individual expertise expert, newcomer
1. We perform a fine-grained manual analysis in word granularity.
First, we apply tokenization, stemming, lemmatization, and stop
word removal. Then, we discard non-smell related words, and
identified 279 keywords out of 875 words. The examples of
keywords are available in our online appendix.

2. Inspired by open coding, the first author manually aggregates
the words into 24 codes according to the technical, development
process, and social aspects they expressed.

3. Following the principles of axial coding, we assign the codes of
words to the sentences they belong to, and we summarize 13
sub-categories from the codes.

4. We invite 5 master and Ph.D. students to check if each comment
belongs to each code since the meanings of sentences may not be
identifiable by inspecting only words, each volunteer is respon-
sible for 4 to 5 codes, as a result, we corrected 151 comments.
We adjust the sub-categories if they conflict or overlap with each
other.

5. We perform selective coding and identify 4 core concepts of
these comments.

6. Finally, we assign the identified code to features in the datasets
according to feature definitions.

The results are presented in Table 3. We also demonstrate their
ate of occurrence in parentheses if the rate is greater than 1%. The
ate is calculated by the number of comments that express an aspect
ivided by the number of all comments. There exist numerous size
eatures in the KBS dataset, thus we use a wildcard(*) to represent all
f them. We merge design and implementation because they are used
nterchangeably by developers since design could be reflected in imple-
entation. The bolded codes are the major aspects we consider (also

alled ‘‘Concerned Aspects’’ in Fig. 3) in further RQs for explanation.
he protocol of involving aspects for explanation is that they should
e (1) major concerns of developers, i.e., core category mentioned in
ore than 10% comments, (2) covered by the features, e.g., we do
ot involve categories without features covered because XAI cannot
enerate explanations that do not exist in the feature set, (3) precise
8

nd measurable, we exclude sub-categories such as ‘‘general design’’
because they are either too general or can be simulated by the features
in other categories.

Based on the up-mentioned protocols, we discarded 319 instances
out of 1332 to ensure all aspects concerned by developers are reflected
in the samples for further explanation. The details are listed in Table 4.
To assess whether adapting the developers’ concerns to the model gen-
eration process would help XAI in the upcoming sections, we also need
to locate the most significant concerns of developers. The highlighted
cells in the table represent dominant concerns of developers for each
smell. For Spaghetti Code, Shotgun Surgery, and Complex Class, it is easy
to identify the dominant ones since the trivial ones are mentioned in
less than 50% samples than the dominant aspects. However, we find
that the aspects reflected are more diverse for Blob, and we believe it
is closely related to its definition, i.e., implementing multiple respon-
sibilities. Moreover, Blob explanations are more likely to be discarded
since developers make general and unclear comments on the reason
that they assign criticalities. Thus we highlight the cells with more than
10% samples covered specifically for this smell.

5. Experimental design

The aim of our study is to evaluate whether and to what extent the
behaviors of well-performed code smell prioritizers could be explained
to meet the expectations of developers. The purpose of our study is
helping both researchers and developers by generating human-alike
and human-friendly explanations for black-box models to save efforts
of SQA decision-making. To these ends, we propose the following 3
research questions.

RQ1: Can we build an accurate and reasonable prediction model for XAI
explanation?

The motivation for proposing this RQ is to clarify the basic experi-
mental settings according to prior guidelines of XAI for SQA (mentioned
in Section 2.1). Meanwhile, we also intend to ensure the model per-
forms well and reasonably by diagnosing its behavior and inspecting
its performance metrics.

RQ2: Is there a gap between XAI explanations and developers’ expecta-

tions?

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.

m
f
b
w
o
e

R
e

i
d
k
e

5

5

t
a
t
s
s
d
c
c

(
(
o
t
i
t
t
w
e
r
r
s
e
F
s

f
c
M
L
o
e
a

i

Table 4
Distributions of concerned aspects in filtered samples.

Coupling Change Cohesion Size Complex-
ity

Production Testing Number of
samples

Spaghetti Code 1% 0% 3% 63% 47% 2% 0% 249
Shotgun Surgery 63% 2% 12% 4% 24% 3% 0% 295
Complex Class 2% 14% 0% 6% 81% 13% 10% 291
Blob 2% 33% 4% 24% 15% 13% 20% 178

Total Mentions 16% 9% 4% 27% 47% 7% 6% 1013
c
w
M
r
c
R
o

𝑇

𝐹

a
w
f

𝛼

b
t
t
i

𝐷

𝐷

w

Although (Jiarpakdee et al., 2022) suggested a well-performed SQA
odel should be built specifically for XAI explanation, practitioners

ound they may not behave like humans. Thus, there may be a gap
etween XAI explanations and developers’ expectations. In this RQ,
e evaluate how large the gap is in terms of the presence of devel-
pers’ concerns and the cognitive load for developers to interpret the
xplanation.

Q3: Can we narrow the gap in RQ2 by considering the developers’
xpectations while building predictors?

Based on the results of RQ2, we intend to narrow the gap by
mproving the automatic feature selection method by considering the
evelopers’ concerns summarized in Table 3. We assume that the prior
nowledge of developers’ concerns might be helpful for aligning XAI
xplanations with developers’ expectations.

.1. RQ1: Building models for explanation

.1.1. Model generation and validation
In terms of model validation, we use Leave-One-Out Cross Valida-

ion (LOOCV) to assess the performance of the model and generate
n explanation for every instance because it is more reliable (Tan-
ithamthavorn et al., 2017) than the Stratified 10-fold Cross-Validation
trategy used by the MSR paper. For the rest of the model validation
ettings, we follow the conventional settings in the MSR paper, i.e., no
ata balancing (since no class should be balanced compared with other
lasses) and cross-project prediction (i.e., the dataset of each smell was
onstructed regardless of the project of the affected classes).

We select a subset of features for XAI by mitigating collinearity
i.e., the correlation between pairs of features) and multicollinearity
i.e., collinearity among multiple features), since the interpretability
f XAI methodologies may be harmed due to the interchangeability of
hese correlated features. We do not use CFS as the MSR paper did since
t is designed to trade off between mitigating correlation and preserving
he performance by assessing the merits of removing features. The
radeoff may fail, and it may greatly impact performance. In contrast,
e exploit an automatic approach called AutoSpearman (Jiarpakdee

t al., 2020) which mitigates collinearity and multicollinearity sepa-
ately in 2 phases while keeping most features as possible. AutoSpearman
equires 2 thresholds to determine to what extent multicollinearity
hould be mitigated, and we use the conventional values validated by
mpirical study in SQA (𝜌 = 0.7, 𝑉 𝐼𝐹 = 5) (Jiarpakdee et al., 2020).
eature selection is performed independently for datasets of each code
mell.

In terms of classifier selection, we apply the scikit-learn package
rom Python to train machine learners using multiple classifiers, in-
luding K-Nearest Neighbors, Random Forest, Support Vector Machine,
ultilayer Perceptron, Adaboost, Naive-Bayes, Logistic Regression, and

inear Regression. To avoid an excessively large search space, we
nly tune their most sensitive parameters (Jiarpakdee et al., 2020; Yu
t al., 2019). The detail of tuned parameters is available in our online
ppendix.7

We assess the performance of the models using metrics for classifiers
ncluding AUC-ROC (ranged from 0 to 1), MCC (ranged from −1 to

7 https://github.com/SORD-src/ESWA23/blob/main/parameters.png.
9

d

1), and F-Measure (ranged from 0 to 1). AUC-ROC and MCC are
more reliable since they are not threshold-dependent and insensitive
to imbalanced data (Tantithamthavorn et al., 2017; Yao & Shepperd,
2020). AUC-ROC > 0.7 (Jiarpakdee et al., 2022) is considered an
indicator of good performance, and models with MCC > 0.5 could be
onsidered as state-of-the-art (according to Yao and Shepperd (2020)
hen F-Measure ≥ 0.7). Meanwhile, it is a convention to report the F-
easure performance. We do not include Precision and Recall to avoid

eporting an excessive number of metrics since classification metrics
ould summarize them. In terms of the definitions of the metrics, AUC-
OC is calculated as the area under the TPR–FPR curve. The equations
f TPR, FPR, MCC, and F-Measure are listed in (1) to (4).

𝑃𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (1)

𝐹𝑃𝑅 = 𝑇𝑁
𝐹𝑃 + 𝑇𝑁

, (2)

𝑀𝐶𝐶 = 𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁
√

(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
, (3)

−𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 × 𝑇𝑃
2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(4)

where TP is for true positive (positive sample predicted as positive), FN
is for false negative (positive sample falsely predicted as negative), TN
is for true negative, and FP is for false positive.

Moreover, we involve another performance metric called Krippen-
dorff’s Alpha (Krippendorff, 1970). Alpha measures inter-raters’ agree-
ment (higher is better), and it is different from classification metrics
since it takes the distance between the predicted and real criticalities
into consideration (Tian et al., 2016). We involve it as a related study
in bug report prioritizing (Tian et al., 2016) suggested Alpha could
handle uncertainty in human rating better than classification metrics.
(Krippendorff, 1970) suggested agreement with 𝛼 ≥ 0.8 is reliable, 𝛼
between 0.667 and 0.8 should be considered, and agreement with 𝛼
< 0.667 is not reliable. XAI results should at least not be unreliable,
nd they should be helpful for the decision-making process, and thus
e choose 𝛼 ≥ 0.667 as a signal of reasonable agreement. The equation

or calculating 𝛼 is listed in (5).

= 1 −
𝐷𝑜
𝐷𝑒

(5)

𝐷𝑜 is the observed disagreement between code smell criticality assigned
y the original developers, and 𝐷𝑒 is the disagreement expected when
he rating of code smells can be attributed to chance rather than due to
he inherent property of the code smells themselves, their calculation
s listed in (6) and (7).

𝑜 =
1
𝑛
∑

𝑐

∑

𝑘
𝑜𝑐𝑘 𝑚𝑒𝑡𝑟𝑖𝑐 𝛿

2
𝑐𝑘 (6)

𝑒 =
1

𝑛(𝑛 − 1)
∑

𝑐

∑

𝑘
𝑛𝑐 . 𝑛𝑘 𝑚𝑒𝑡𝑟𝑖𝑐 𝛿

2
𝑐𝑘 (7)

here 𝑜𝑐𝑘, 𝑛𝑐 , 𝑛𝑘 and 𝑛 refer to the frequencies of values in the coinci-
ence matrices and 𝑚𝑒𝑡𝑟𝑖𝑐 refers to any metric or level of measurement,

https://github.com/SORD-src/ESWA23/blob/main/parameters.png

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.

b
t

5

i
t
c
b

b
d
h
b
f
f

n

h

m

a
p
s
m
i
e
e
r
b
o
t

5
d

X
m
O
b
e
s
o
o
f
i
v
a
t
t
f
c
2

5

s
t
S
M
p
l
m
(
t
p
t

5

t
c
d
a
i
c

p
2

we use the ordinal metric (Krippendorff, 2011) to calculate inter-
annotator agreement, since the criticalities could be transferred to
ordinal values (e.g., {0, 1, 2} for {NON-SEVERE, MEDIUM, SE-
VERE}). 𝛼 is ranged in 0 and 1. 𝛼 = 1 indicates perfect agreement
etween developer and model. When 𝛼 = 0 the agreement is no better
han random guessing.

.1.2. Model diagnosing and explanation
We exploit an XAI approach called SHAP to generate global feature

mportance based on its local explanations and inspect model behavior
o ensure the model does not generally make decisions based on unac-
eptable reasons or obvious bias. If so, we try to remove the anomaly
ehavior of the model.

SHAP measures the contribution of a feature value to the difference
etween the actual local prediction and the global mean prediction to
istribute the credit for a classifier’s output among its features (Rajba-
adur et al., 2022) using the game-theory based Shapley values (Lund-
erg & Lee, 2017). For each instance in the training set, SHAP trans-
orms the features of the instance into a space of simplified binary
eatures as input. Afterward, SHAP builds the model 𝑔 for explanation

defined as a linear function of binary values, more specifically in
Eq. (8):

𝑔(𝒛) = 𝜙0 +
𝑀
∑

𝑖=1
𝜙𝑖𝑧𝑖, (8)

where 𝒛 ∈ {0, 1}𝑀 is the coalition vector (also known as simplified
features), and 𝑀 is the maximum size of the coalition vector (i.e., the
umber of simplified features). Specifically, 𝑧𝑖 is the 𝑖th binary value

in 𝒛, where 𝑧𝑖 = 1 means the corresponding feature is included in the
coalition, and 𝑧𝑖 = 0 indicates the feature is absent from the coalition.
𝜙0 is the average prediction value of the model, and 𝜙𝑖 is the Shapley
value of the 𝑖th feature. Larger positive 𝜙𝑖 indicates a greater impact
of the 𝑖th feature on the positive prediction result of the model. Note
that ∣𝜙𝑖∣ is SHAP feature importance score that is guaranteed in theory
to be locally, consistently, and additively accurate for each data point.
We use the Python implementation of SHAP in our study.

5.2. RQ2: Measuring the gap

Based on the filtered instances mentioned in Table 4, we generate
SHAP explanations of the most accurate models for every code smell
instance.

Apart from 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 metrics, we also assess the gap between XAI
explanations and developers’ expectations in terms of (1) the 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒
of explanations on expectations, i.e., to what extent developers’ expec-
tations present in the comments, and (2) the 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 of explanations,
i.e., whether the generated explanation is too complex for under-
standing, because it is impractical to let practitioners with limited
cognitive ability to interpret very complex explanations for every smell.
A narrower gap could be characterized by higher 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 and lower
𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦, which means the explanation can meet the expectation of
developers to a greater extent with less redundant information.

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 is calculated by the 𝑅𝑒𝑐𝑎𝑙𝑙 of features’ codes that appear
in codes reflected in developers’ comments (see Section 3.3 for an
example). Higher 𝑅𝑒𝑐𝑎𝑙𝑙 means the contents expected by the developers
ave more presence in XAI explanations.
𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 is measured in two aspects. (1) 𝐾 is the number of

most important features demonstrated to users to avoid information
overload, which should be limited to the greatest extent. However,
there is a tradeoff between 𝐾 and 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒, since displaying too little
information will lead to unsound results (Kulesza et al., 2013). (2)
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 of feature importance matrix (Maltbie et al., 2021) is also
measured to complement with 𝐾. 𝐾 is not enough to completely reflect
10

the cognitive complexity of interpreting the explanations. Additional
information displayed in larger 𝐾 could be less important and infor-
ative. The 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 of explanations may not increase consistently as 𝐾

grows.
At present, there lack of empirical evidence for determining an ideal

level of 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 and 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒. Thus, to examine whether 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦
nd 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 of XAI explanations are reasonable, we demonstrate line
lots of these metrics in inspecting 𝐾 features ranging from 2 to 15
eparately. However, in terms of 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦, empirical suggestions are
ade for ideal 𝐾 values in related work, i.e., 𝐾 = 3 was evaluated

n related work in defect prediction (Rajbahadur et al., 2022), and
xperts thought inspecting top-𝐾 = 10 features would be helpful for
xplanation (Maltbie et al., 2021). We specifically focus on the two
epresentative 𝐾 values, and we also test 𝐾 ranged from 3 to 10 would
e more reasonable. In terms of 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒, we use 𝑅𝑒𝑐𝑎𝑙𝑙 > 0.7 as an
ptimal standard since related work in defect prediction also uses this
hreshold to determine state-of-the-art models (Jiarpakdee et al., 2022).

.3. RQ3: Improving feature selection to narrow the gap between XAI and
evelopers

In this RQ, we intend to narrow the gap in explanations between
AI and developers by improving the 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 in RQ2, and in the
eantime, assure 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 is acceptable by novice or expert users.
ur assumption is that adapting to the developers’ perceptions should
e helpful to accomplish this goal. Compared with the present feature
ngineering and complex black-boxed models, we think that the feature
election process is not carefully designed with respect to the context
f SQA. In the scope of this paper, the context to focus on is devel-
pers’ concerns about code smell prioritization. Without this focus,
eatures that developers are concerned about will be treated like others
n feature selection when compared mathematically with correlation
alues, and will likely be discarded. Thus, we modify the state-of-the-
rt feature selection algorithm AutoSpearman (Jiarpakdee et al., 2020)
o consider the priority of features according to developers’ concerns in
he granularity of categories. Our approach is also applicable to other
eature selection algorithms like CFS. Since they are less competitive in
orrelation mitigation and preserving performance (Jiarpakdee et al.,
020), we are not using them as the basic approaches to improve.

.3.1. The original AutoSpearman feature selection
The original AutoSpearman is superior to other classical alternatives

uch as CFS (Correlation-based Feature Selection) in terms of the consis-
ency of selected feature subsets and the mitigation of multicollinearity.
uch advantages are proved beneficial to XAI (Jiarpakdee et al., 2020).
oreover, although it is not designed for improving or preserving

erformance, since it is preserving features as much as possible, it has
ess impact on performance. AutoSpearman is performed in 2 phases, it
itigates collinearity according to Spearman’s rank correlation value
𝜌) in the first phase and multicollinearity according to 𝑉 𝐼𝐹 value in
he second phase. AutoSpearman removes features repetitively in each
hase until all remaining features are deriving 𝑉 𝐼𝐹 and 𝜌 values lower
han 2 given thresholds (conventionally, 5 for 𝑉 𝐼𝐹 and 0.7 for 𝜌).

.3.2. Enhancing AutoSpearman with feature priority awareness
We intend to preserve the features that meet developers’ expecta-

ions according to their priorities. Table 5 lists the priorities of different
ategories. The priorities are assigned according to Table 4, i.e., for
ominant aspects (highlighted cells in Table 4), we assign a priority
ccording to the number of samples mentioned, and we assign the pos-
tive infinity value to the priority of more trivial aspects (unhighlighted
ells in Table 4).

We enhance the adaptation of AutoSpearman to our context while
reserving its original advantages. In Algorithms 1 and 2, we propose
modified versions of the original AutoSpearman called AS_Reductive

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.

r

y

s

n
d
o

Table 5
The priorities of features in different categories (generated according to Table 4).

Smell Category Priority

Blob Change 1
Blob Size 2
Blob Testing 3
Blob Complexity 4
Blob Production 5
Blob Coupling, Cohesion +∞

Shotgun Surgery Coupling 1
Shotgun Surgery Complexity 2
Shotgun Surgery Change, Cohesion, Size, Production,

Testing
+∞

Complex Class Complexity 1
Complex Class Coupling, Change, Cohesion, Size,

Production, Testing
+∞

Spaghetti Code Complexity 1
Spaghetti Code Size 2
Spaghetti Code Coupling, Change, Cohesion, Production,

Testing
+∞

and AS_Additive. The source code8 of the algorithms is available in our
eplication package.
Algorithm 1: AS_Reductive

Input: 𝑀 is a set of candidate metrics for selection
Output: 𝑀 ′ is a subset of 𝑀 with multicollinearity mitigated

1 𝑀 ′ = 𝑀
2 𝑆 = 𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛(𝑀,𝑀)
3 𝐶𝑆 = {𝑐(𝑚𝑖, 𝑚𝑗) ∈ 𝑆|𝑎𝑏𝑠(𝑐(𝑚𝑖, 𝑚𝑗)) ≥ 0.7}

// 0.7 is a conventional Spearman’s rank test
threshold indicating high correlation

4 𝐶𝑆 = 𝑠𝑜𝑟𝑡(𝐶𝑆)
/* Phase 1, Mitigating Collinearity */

5 for 𝑐(𝑚𝑖, 𝑚𝑗) 𝑖𝑛 𝐶𝑆 do
6 if 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑚𝑖) != 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑚𝑗) then
7 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑.𝑚𝑒𝑡𝑟𝑖𝑐 = 𝑚𝑖𝑛(𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑚𝑖), 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑚𝑗))

// Keeping the metric with higher priority

8 else
9 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑.𝑚𝑒𝑡𝑟𝑖𝑐 = 𝑚𝑖𝑛(𝑚𝑒𝑎𝑛(𝑎𝑏𝑠(𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛(𝑚𝑖,𝑀 −

{𝑚𝑖, 𝑚𝑗}))), 𝑚𝑒𝑎𝑛(𝑎𝑏𝑠(𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛(𝑚𝑗 ,𝑀 − {𝑚𝑖, 𝑚𝑗}))))
// Keeping the metric with a lower correlation
if the two metrics share the same priority

10 𝑟𝑒𝑚𝑜𝑣𝑒𝑑.𝑚𝑒𝑡𝑟𝑖𝑐 = {(𝑚𝑖, 𝑚𝑗)} − 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑.𝑚𝑒𝑡𝑟𝑖𝑐
11 𝐶𝑆 = {𝑐(𝑚𝑖, 𝑚𝑗} ∈ 𝐶𝑆 |𝑚𝑖 ≠ 𝑟𝑒𝑚𝑜𝑣𝑒𝑑.𝑚𝑒𝑡𝑟𝑖𝑐 ∧ 𝑚𝑗 ≠

𝑟𝑒𝑚𝑜𝑣𝑒𝑑.𝑚𝑒𝑡𝑟𝑖𝑐)
12 𝑀 ′=𝑀 ′ − 𝑟𝑒𝑚𝑜𝑣𝑒𝑑.𝑚𝑒𝑡𝑟𝑖𝑐

/* Phase 2, Mitigating Multi-Collinearity */
13 repeat
14 𝑉 = 𝑉 𝐼𝐹 (𝑀 ′)
15 𝐶𝑉 = {𝑣(𝑚𝑖) ∈ 𝑉 |𝑣(𝑚𝑖) ≥ 5} // 5 is a conventional

threshold of VIF score indicating high
multi-collinearity

16 𝑟𝑒𝑚𝑜𝑣𝑒𝑑.𝑚𝑒𝑡𝑟𝑖𝑐 = {𝑚𝑖|𝑣(𝑚𝑖) ∈ 𝐶𝑉 ∪ 𝑣(𝑚𝑖) = 𝑚𝑎𝑥(𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝐶𝑉))
// Discard metric with the lowest priority

17 𝑀 ′= 𝑀 ′ − 𝑟𝑒𝑚𝑜𝑣𝑒𝑑.𝑚𝑒𝑡𝑟𝑖𝑐
18 until |𝐶𝑉 |=0
19 return 𝑀 ′

First, we introduce AS_Reductive. The algorithm is described in
Algorithm 1, where 𝑆 is a set of Spearman coefficients for each pair of
metrics, 𝐶𝑆 is a set of Spearman coefficients that are above a threshold

8 https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriorit
.py.
11

p

value. It is named reductive since the major process of the algorithm is
to discard features from a full candidate metric set 𝑀 . In the original
and this modification of AutoSpearman, there exist multiple candidates
to remove in each loop (e.g., we should remove either 𝑚𝑖 or 𝑚𝑗 in the
correlated pair (𝑚𝑖, 𝑚𝑗) of line 5 in Algorithm 1). The original AutoS-
pearman directly removes the metric having more correlation with other
metrics (i.e., line 9 in Algorithm 1). This functionality overlaps with
the second phase since multicollinearity also measures the correlation
between one feature and the other remaining features. AS_Reductive
first compares the priority of the candidate metrics to remove (i.e., the
𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦() function in line 6), and then removes the one with lower
priority (i.e., higher priority value). The 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦() function extracts the
priority value of any feature according to Tables 3 and 5, for example,
the priority of the LOC metric of Blob prioritization could be determined
by (1) locating the category of LOC in Table 3, which is ‘‘size’’ in the
case, and (2) extracting the priority of the category (i.e., ‘‘size’’) in
Table 5, in this case, the priority is 2. If the priorities are consistent,
the algorithm falls back to the original AutoSpearman solution in line 9.
Similarly, the algorithm may identify multiple candidates in the second
phase, and we discard the one with higher priority (see line 16) in
advance.
Algorithm 2: AS_Additive

Input: 𝑀 is a set of candidate metrics for selection
Output: 𝑀 ′ is a subset of 𝑀 with multicollinearity mitigated

1 𝑀ℎ𝑝 = {𝑚 ∈ 𝑀|𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑚) < +∞} // Filtered metrics
with higher priority

2 𝑀𝑙𝑝 = 𝑀 −𝑀ℎ𝑝 // Candidate metrics with lower
priority

3 𝑀 ′ = 𝐴𝑢𝑡𝑜𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛(𝑀ℎ𝑝) // Keep metrics with higher
priority as much as possible

4 for 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒.𝑚𝑒𝑡𝑟𝑖𝑐 𝑖𝑛 𝑀𝑙𝑝 do
5 if 𝑚𝑎𝑥(𝑎𝑏𝑠(𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒.𝑚𝑒𝑡𝑟𝑖𝑐,𝑀 ′))) < 0.7 and

𝑉 𝐼𝐹 (𝑀 ′ + 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒.𝑚𝑒𝑡𝑟𝑖𝑐) < 5 then
6 𝑀 ′ = 𝑀 ′ + 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒.𝑚𝑒𝑡𝑟𝑖𝑐 // Add metric if it

does not introduce high multi-collinearity

7 return 𝑀 ′

Then, we introduce AS_Additive listed in Algorithm 2. This variation
is designed to preserve most features with higher priority (i.e., with
non-infinite priority value, 𝑀ℎ𝑝 in Algorithm 2) in advance, then
adding features with lower priority (𝑀𝑙𝑝 in Algorithm 2) as much as
possible. Thus, it first generates a subset of features with high priority
using AutoSpearman. Then, it iterates through the low priority metrics
in line 4 to check if adding each of them would cause a significant
increase in collinearity and multicollinearity in line 5. If introducing
any candidate metric with lower priority does not cause a violation of
threshold, we add it to the result set in line 6.

5.3.3. Statistical tests on the significance of improvement
We apply statistical measures, i.e., Wilcoxon Ranksum Test (𝛼 =

0.05, p < 𝛼 for statically significant) to analyze the significance of
the difference in the distribution of the performance metrics between
the original AutoSpearman and each of our two variations. Wilcoxon
Ranksum Test is applicable for data with nonparametric distributions.
Meanwhile, we calculate Cliff’s Delta (𝛿) to measure the effect size (i.e.,
the extent of the difference) for each pair of feature values that lead
positive and negative outcomes which is negligible when ∣𝛿∣ < 0.147,
mall when 0.147 ≤ ∣𝛿∣ < 0.33, medium when 0.33 ≤ ∣𝛿∣ < 0.474, and

large otherwise.
We apply statistical measures in both 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 and 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒. The

ull hypothesis is that there exists no significant difference in data
istribution of 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 or 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 between AutoSpearman and each
f our two variations.

Since we intend to improve 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒, we hope that the null hy-

othesis could be rejected for 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒. The effect size should be

https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py
https://github.com/SORD-src/ESWA23/blob/main/AutoSpearmanPriority.py

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.
Fig. 4. Top-10 feature importance with project metric included.
p
C
b

m
f
m
a
e
c
i
F
A
p
A
H
m
i

Table 6
Distribution of Complex Class and Blob priorities in different projects.

Complex Class Blob

NON-
SEVERE

MEDIUM SEVERE NON-
SEVERE

MEDIUM SEVERE

Cassandra 0 14 0 7 0 20
Cayenne 0 0 7 0 0 0
CXF 12 0 20 0 0 24
Jena 0 32 0 0 43 14
Solr-Lucene 0 0 21 2 85 0
CDT 64 143 9 0 11 10
Jackrabbit 14 1 10 0 0 0
Mahout 0 0 2 0 0 0

non-negligible. Moreover, the value of performance metrics should
increase.

For 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦, if the null hypothesis is rejected, 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 is not
different from the comparator. Under the condition of 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 im-
provement, it is acceptable. If the null hypothesis is accepted, and the
effect size is non-negligible, the 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 values should be decreasing as
a sign of a simpler explanation.

These measures could not be used for 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 values since our pre-
diction is a cross-project prediction, and thus it is a directly comparable
absolute value instead of a set of data.

6. Case study results

6.1. RQ1: Model diagnosis and performance

First, we train Random Forest models to diagnose them using
SHAP to generate global feature importance, i.e., the mean absolute
value of local SHAP feature importance. We find that NOPK_project
and NOI_project (Number Of PacKages/Interfaces of a project) are
ranked top for Blob and Complex Class in Fig. 4. We think it is not
reasonable that a project-level metric could effectively predict whether
a class is smelly to such a great extent, and developers have never
mentioned their concern in the granularity of project.

To investigate why the behavior is unreasonable, we summarize the
distribution of Complex Class and Blob priorities in different projects
in Table 6. Apparently, certain priorities in some projects are domi-
nant (e.g., MEDIUM priority in Cassandra), and some projects contain
only one priority. However, project metrics remain the same within a
project, and it will leak project information (e.g., Cassandra instances
may be more likely to be predicted as MEDIUM priority since their
NOPK_project and NOI_project features remain the same in the
training set and test set). Consequently, the predictor may predict
based on leaked project characteristics instead of code structure. Darker
cells in Table 6 indicate potential bias may be introduced by project
12

metrics due to the distribution of samples. To assess if the bias is a
consequence of value distribution, we also replace all unique values of
NOPK_project and NOI_project with randomly generated values,
and its feature importance ranks remain the same (details available
in the online appendix9). This indicates that the uniqueness of these
values is more meaningful than the structural information they are rep-
resenting. To clarify, NOPK_project and NOI_project are the only
roject level metrics in the selected feature set for Blob and Complex
lass, and other project level metrics are discarded by AutoSpearman,
ecause project metrics highly correlate with each other.

To ensure a more reasonable model behavior, we discard all project
etrics from the features. Afterward, we train multiple classifiers to

ind the best-performed one. Table 7 demonstrates the best perfor-
ance that each classifier could achieve. AdaBoost and Random Forest

re well-performed classifiers. Compared with AdaBoost, Random For-
st performs better in most cases. Thus, we use Random Forest as the
lassifier in the later experiments. Compared with the performance us-
ng all features, the performance of Blob and Complex Class in Random
orest declines by 7%, 6% for AUC-ROC, and 8%, 23% in terms of
lpha. However, the generated Random Forest models are still well-
erformed according to most performance metrics in Table 7, since
UC-ROC > 0.7 and MCC > 0.5 is considered good performance.
owever, the Alpha performance of Shotgun Surgery and Spaghetti Code
odels reveal that their agreement with developers is questionable,

.e., they are good classifiers rather than good prioritizers.

Response to RQ1

After diagnosing model behavior, we find that all project
metrics should be discarded. Afterward, we can still build
well-performed Random Forest models for all smells with AUC-
ROC ranging from 0.72 to 0.91. However, the Alpha metric
shows Spaghetti Code and Shotgun Surgery models have a low
agreement with developers as prioritizers.

6.2. RQ2: The coverage and complexity of XAI’s explanations on baseline
approach

Based on the models built in RQ1 (with project metrics excluded),
we exploit SHAP to generate feature importance explanations and
measure their 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 using different 𝐾 values. The results are demon-
strated in Fig. 5.

In terms of 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒, a simple explanation inspecting only top-3
features (Rajbahadur et al., 2022) will unlikely be useful for all smells,
because more than 40% concerned aspects are not covered. Complex

9 https://github.com/SORD-src/ESWA23.

https://github.com/SORD-src/ESWA23

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.

C
c
t
i
p
e
a
M
i
w

i
n
l
b
F
c
o

Table 7
Model performance and hyper-parameter value.

Classifier Smell AUC-ROC MCC F-Measure Alpha Hyperparameter

Random Forest Blob 0.91 0.82 0.89 0.80 n_estimators = 140
AdaBoost Blob 0.87 0.78 0.87 0.82 n_estimators = 200
Logistic Regression Blob 0.83 0.66 0.80 0.64 tolerance = 0.1
K-Nearest Neighbors Blob 0.81 0.61 0.77 0.64 n_neighbors = 5
Multilayer Perceptron Blob 0.78 0.57 0.75 0.53 alpha = 0.1
Naive Bayes Blob 0.75 0.49 0.69 0.57 var_smoothing = 0.001
Support Vector Machine Blob 0.68 0.47 0.78 0.49 C = 0.1
Linear Regression Blob 0.58 0.20 0.48 0.37 normalize = True

Random Forest Complex Class 0.88 0.77 0.86 0.67 n_estimators = 100
AdaBoost Complex Class 0.87 0.74 0.84 0.61 n_estimators = 150
Logistic Regression Complex Class 0.83 0.65 0.79 0.58 tolerance = 0.1
Multilayer Perceptron Complex Class 0.81 0.63 0.78 0.60 alpha = 0.000F1
K-Nearest Neighbors Complex Class 0.75 0.51 0.71 0.53 n_neighbors = 7
Naive Bayes Complex Class 0.74 0.48 0.68 0.37 var_smoothing = 1.00E−07
Linear Regression Complex Class 0.52 0.08 0.39 0.24 normalize = True
Support Vector Machine Complex Class 0.50 0.00 0.71 0.00 C = 0.1

Random Forest Shotgun Surgery 0.72 0.50 0.66 0.46 n_estimators = 100
AdaBoost Shotgun Surgery 0.73 0.46 0.65 0.25 n_estimators = 20
Naive Bayes Shotgun Surgery 0.72 0.44 0.64 0.45 var_smoothing = 1.00E−05
Multilayer Perceptron Shotgun Surgery 0.67 0.34 0.58 0.32 alpha = 0.01
K-Nearest Neighbors Shotgun Surgery 0.64 0.29 0.53 0.17 n_neighbors = 7
Logistic Regression Shotgun Surgery 0.61 0.24 0.51 0.34 tolerance = 0.01
Linear Regression Shotgun Surgery 0.52 0.06 0.36 0.13 normalize = True
Support Vector Machine Shotgun Surgery 0.50 0.00 0.63 0.00 C = 0.1

Random Forest Spaghetti Code 0.75 0.54 0.70 0.48 n_estimators = 20
AdaBoost Spaghetti Code 0.73 0.47 0.68 0.49 n_estimators = 80
Logistic Regression Spaghetti Code 0.68 0.37 0.61 0.35 tolerance = 0.01
Naive Bayes Spaghetti Code 0.67 0.43 0.59 0.30 var_smoothing = 1.00E−09
Multilayer Perceptron Spaghetti Code 0.66 0.31 0.58 0.24 alpha = 0.0001
K-Nearest Neighbors Spaghetti Code 0.65 0.31 0.57 0.23 n_neighbors = 7
Linear Regression Spaghetti Code 0.59 0.22 0.45 0.36 normalize = True
Support Vector Machine Spaghetti Code 0.55 0.24 0.59 0.11 C = 0.1
Fig. 5. The 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 and 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 of XAI’s explanations using different 𝐾 values.
a

lass and Spaghetti Code prioritizers could cover most developers’ con-
erns (Recall > 0.7) when inspecting more than 7 features. As for
he complex explanation (e.g., inspecting 10 features), the coverage
ncreases gradually for Shotgun Surgery, but still fails to achieve ideal
erformance. Inspecting 3 and 10 features does not make much differ-
nce in terms of 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 of the Blob model, and about 60% of concerns
re not covered for Blob in complex explanations using top-10 features.
oreover, the 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 of developers’ comments do not necessarily

n line with the performance of models, which reveals the fact that
ell-performed models may not behave like humans.

In terms of 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦, the 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 increases as more features are
nspected, but it does not increase at a consistent speed as the feature
umber grows. This reveals the less important features that appeared
ater are less informative. We can also find that smells that derive much
etter 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (e.g., Complex Class) are less complex in inset (b) of
ig. 5, indicating that their criticalities are easier to explain. However,
ompared with the 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 data, the 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 among explanations
f different models does not differ to a great extent.
13

w

Response to RQ2

Using the model built in RQ1, no smell can be well explained
with high 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (𝑅𝑒𝑐𝑎𝑙𝑙 > 0.7) of developers’ concerns using
simple explanations. Complex Class and Spaghetti Code can be
explained using more complex explanations that experts may
tolerate, while most instances of Blob and Shotgun Surgery are
not likely to be explained in top-10 features, which reveals an
obvious gap of explanations between XAI and developers.

6.3. RQ3: XAI explanations after feature selection considering developers’
expectation

Fig. 6 depicts the 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 of XAI’s explanations using different
modifications of AutoSpearman as feature selection methods, while
Fig. 7 demonstrates the 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 they derive. Since Fig. 7 indicates
ll methods derive similar 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦, we focus on Fig. 6 to determine
hich methods are superior. We find that the modified versions of

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.

I
m
f
t
s
m
f

o
m
t
a
s

Fig. 6. 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 of different feature selection methods.
Fig. 7. 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 of different feature selection methods.
F
AutoSpearman achieve better 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 for Blob and Spaghetti Code.
n terms of Complex Class, compared with the original version, the
odified versions improve the 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 of Complex Class in 𝐾 ranging

rom 2 to 9, which is within the range of more acceptable 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦. In
erms of Shotgun Surgery, the difference between 3 methodologies is not
ignificant in 𝐾 ranging from 2 to 6, but for larger 𝐾 values that derive
ore reasonable 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (i.e., > 0.7), the advantage of the modified

eature selection is observable.
The hypothesis testing result from Table 8 is in line with our

bservation. The 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 statistical results show no significance in
ost cases 3 smells other than Spaghetti Code, and for Spaghetti Code,

he difference is caused by the reduction of 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦, and thus our
pproach does not increase or even reduces 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦. The 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒
tatistical results are significant in 3 smells other than Shotgun Surgery.
14
or Shotgun Surgery, although there are improvements in absolute
values, they are not statistically significant.

In terms of 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, Table 9 shows the impact of feature selection
to model performance. The new feature selection methods impose slight
(no more than 1%) performance impact to Blob, Complex Class, and
Shotgun Surgery prediction. However, it greatly increases the Spaghetti
Code AUC-ROC performance by 12%, because the original AutoSpear-
man is discarding important size metrics, which will be introduced later
in this section. It is worth noticing that the Spaghetti Code model built in
this section is well-performed with the standard (> 0.66) of the Alpha
metric. In conclusion, the modified feature selection methods are not
imposing a significant negative impact on 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦.

To make a practical analysis, we intend to further explain for typical
𝐾 values, to what extent the improvement is. To choose a reasonable
𝐾 for a detailed comparison, we use the smallest 𝐾 value ranging

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.
Table 8
Hypothesis testing result for 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 and 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒.

Smell Approach Agreement (𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) Entropy (𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)

p p < 0.05 𝛿 Effect size p p < 0.05 𝛿 Effect size

Blob AS_Additive 0.005 True 1.000 Large 0.059 False 0.060 Negligible
Blob AS_Reductive 0.005 True 0.980 Large 0.005 True −0.120 Negligible
Spaghetti Code AS_Additive 0.005 True 1.000 Large 0.005 True −0.280 Small
Spaghetti Code AS_Reductive 0.005 True 1.000 Large 0.005 True −0.240 Small
Complex Class AS_Additive 0.028 True 0.260 Small 0.799 False −0.020 Negligible
Complex Class AS_Reductive 0.009 True 0.320 Small 0.114 False −0.060 Negligible
Shotgun Surgery AS_Additive 0.959 False 0.010 Negligible 0.005 True −0.100 Negligible
Shotgun Surgery AS_Reductive 0.221 False 0.060 Negligible 0.005 True 0.100 Negligible
Table 9
The impact of feature selection to model performance.
Smell AUC-ROC MCC F-Measure Alpha 𝑛_estimators Feature Selection

Spaghetti Code +0.12 +0.22 +0.15 +0.22 80 AS_Additive
Shotgun Surgery −0.01 −0.01 −0.01 0.00 200 AS_Reductive
Complex Class +0.01 0.00 0.00 0.00 120 AS_Reductive
Blob −0.01 −0.01 0.00 0.00 30 AS_Reductive
Table 10
Settings used for comparison.
Smell Inspected Features 𝑅𝑒𝑐𝑎𝑙𝑙 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑅𝑒𝑐𝑎𝑙𝑙 Improvement 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 Difference

Spaghetti Code 3 0.88 1.18 +0.29 +0.18
Shotgun Surgery 11 0.70 3.15 +0.07 −0.07
Complex Class 5 0.73 1.93 +0.29 +0.01
Blob 10 0.72 2.91 +0.28 +0.04
Table 11
𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 improvement in different categories.

Coupling Change Cohesion Size Complexity Production Testing

Spaghetti Code 0.33 0.00 −0.71 +0.05 +0.66 0.00 0.00
Shotgun Surgery +0.09 0.00 +0.20 0.00 −0.07 +0.13 +1.00
Complex Class 0.00 0.00 0.00 0.00 +0.31 +0.02 +0.30
Blob 0.00 +0.98 −0.14 0.00 −0.04 +0.21 +0.44
from 3 to 10 that can derive 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ≥ 0.7. Table 10 lists the setting
used for comparison. Compared with the original version, the modified
AutoSpearman achieved an improvement of 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 by 7% to 29%, with
negligible changes in 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 for Shotgun Surgery, Blob, and Complex
Class, as well as lower 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 for Spaghetti Code.

Based on the settings in Table 10, we list the difference of 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒
in the concerned categories in Table 11. Darker cells are major con-
cerns of developers (same as Table 4). For Complex Class and Spaghetti
Code, the 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 of major concerns significantly increases. For Blob,
although the 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 of the complexity category decreases slightly by
4%, the 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 of the other 3 major concerns of change, production,
and testing increases by 98%, 21%, and 44% respectively. The cost of
such improvement is that some aspects less concerned by developers
(e.g., cohesion) are less covered. We think it is an acceptable tradeoff
because practitioners prefer explanations within the scope of their prior
knowledge (Maltbie et al., 2021) and meet their expectations (Kocielnik
et al., 2019). They tend to ignore information that is inconsistent
with their prior beliefs (Riveiro & Thill, 2021). Meanwhile, it does
not increase the 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 of the explanation outputs. We will further
discuss the cost of covering such rare concerns in Section 7.2. For
Shotgun Surgery, its improvement in 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 is less significant since
the major concerns of complexity decline by 7% while the 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 of
another major concern (i.e., coupling) increases by 9%.

Furthermore, in Tables 12–15, we demonstrate the most frequently
appeared 𝐾 features in the top-𝐾 important features of XAI explana-
tions. The Proportion column demonstrates the proportion of a feature
that appears in the top 𝐾 important features of an instance with respect
to all instances. The bolded metrics are significant differences that lead
to improvement.

For Spaghetti Code in Table 12, a cohesion metric is replaced with
15

a complexity metric. In terms of Complex Class in Table 13, a cohesion
metric is replaced with a metric specified in complexity and size, which
is more adaptive to the definition of this smell. Similarly, for Blob
explanations in Table 14, a cohesion feature is replaced with a process
metric. These new features are almost equally important compared with
the original ones, and they can cover the major concerns of developers
in Table 11, which results in the improvement of 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 while not
hindering 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦. In Table 15, a new coupling feature
(i.e., CBO) is introduced to replace another coupling feature (i.e., CF-
NAMM), which improves the 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 of coupling concern. A size metric
is replacing a complexity metric, and thus results in the decline of
the 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 of complexity concern. Consequently, the improvement of
𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 for Shotgun Surgery is not as significant as the other 3 smells.

Response to RQ3

The modified AutoSpearman feature selection methods could
generate feature subsets more adaptive to the developers’ ex-
pectations. The 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 could be increased by up to 29%, with
little or no negative impact on 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 and 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, and
thus all smells could be explained in a simple manner (e.g., 3
and 5 features for Spaghetti Code and Complex Class) and a more
complex manner preferred by experts (e.g., about 10 features
for Blob and Shotgun Surgery).

7. Discussions and implications

In this section, we discuss some open questions and present the
implications related to XAI for SQA.

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.

7

o
t
R
i
m
q
p
c
c
i

s
o
s
e
h
p
o
b
t

Table 12
Top-3 frequently appeared features in top-3 important features of XAI for Spaghetti Code prioritization.
Rank AutoSpearman AS_Additive

Metric Category Proportion Metric Category Proportion

1 C3 Cohesion 85% Readability Complexity 81%
2 NOM_package Size 29% NOM_package Size 76%
3 num_abstract_methods Size 44% NOCS_package Size 16%
m
h
c

w
t
i
H
t
t

7

a
i
d
(
t
(
w
i
p

Table 13
Top-5 frequently appeared features in top-5 important features of XAI for Complex Class
prioritization.

Rank AutoSpearman AS_Reductive

Metric Category Proportion Metric Category Proportion

1 CBO Coupling 98% CBO Coupling 96%
2 RFC Coupling 92% RFC Coupling 96%
3 C3 Cohesion 87% WMC Complexity, Size 92%
4 NOAM Size 60% NOAM Size 79%
5 WOC Size 45% RFC WOC 48%

Fig. 8. XAI of Blob prioritization of IDLLexer.

.1. Explaining the overgeneralized size metrics

Code size patterns are widely considered in SQA. In the scope
f defect prediction, dos Santos et al. (2020) even found using only
he LOC metric can achieve very ideal defect prediction performance.
ecent work (Antinyan, 2021) questioned whether it is practical to

nclude size metrics such as lines-of-code (LOC) in defect prediction
odels. They argued LOC is misleading, since LOC cannot serve for any

uality improvement activity. Size metrics like LOC are usually sim-
le and important because they provide high level abstraction which
ould boost up the performance of predictors. However, they raise the
oncern that the overgeneralization of size metrics is hindering model
nterpretability.

In terms of code smell prioritization, involving LOC is more rea-
onable in motivation since lengthy code is presented in the definition
f certain smells such as Spaghetti Code. However, we also discover
ome worrying trends caused by the overgeneralized size metrics. For
xample, the Blob class IDLLexer10 is perceived as smelly because it
as too many responsibilities. However, from Fig. 8, we can see that the
redictors are making decisions mainly based on size metrics, instead
f cohesion metrics expected by developers. Such predictors and their
ehaviors are less comprehensible, thus they may be considered not
rustworthy by practitioners. For example, it could be simply tricked

10 The full class name is org.apache.cxf.tools.corba.
processors.idl.IDLLexer.
16
by adding meaningless code components. If size metrics are included
in explanation, it remains an open question to interpret what they
represent.

7.2. Meeting functionality concerns of developers

Fig. 9 depicts XAI explanations of a Complex Class called Com-
andFactory,11 the developer commented the factory classes are all
ard to understand because they loop over multiple elements and this may
reate confusion ... Nevertheless, they would not require urgent changes,

and assigned a MEDIUM criticality. The inset (a) demonstrates why
the model makes a MEDIUM prediction, and the inset (b) reveals
why it does not make a NON-SEVERE prediction. From the rows of
is_procedural in the 2 insets, we can find that a factory class
(captured by the is_procedural feature) is less likely to have higher
criticality. We believe such an explanation is practical and useful since
the original developer thought the functionality and characteristic of
factory class is an important factor that lowers the criticality of Complex
Class.

However, although the functionality aspect revealed in Fig. 9 is
important, it is rare and poorly covered. Table 16 demonstrates the
𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 of different aspects, the aspects are ranked in ascendant
according to the proportion of mentions in all samples, and the gray
cells are dominant aspects (major expectations of developers). We can
find that the functionality aspects (i.e., testing and production) are less
covered by XAI explanations, revealing that XAI has less potential in
capturing such rare but important concerns.

Boosting up the numbers of involved features could effectively raise
the 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 on them. For example, in the context of Table 16, Spaghetti
Code explanations are performed using only 3 features, and they almost
ignore the aspects other than the dominant aspects. Boosting up the
inspected feature numbers to 24 could ensure all 2 functionality aspects
are covered at the cost of a dramatic increase of 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (from 1.18
to 3.46). There exists a trade-off between 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 and 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦, and

e think the cost of covering these aspects is too high. However, the
rade-off should be customizable in practice, especially for expert users,
t may be feasible to demonstrate more detailed explanations for them.
owever, instead of tuning explanations, we believe it is more practical

o introduce customizable filters for developers to discard the classes
hat they are unwilling to maintain.

.3. Debiasing and adapting to practitioners’ beliefs

During manual verification, we realize that some developers have
bias toward code maintenance and refactoring (e.g., maintainability

s worth improving, tests are important, and so on). For example, the
eveloper of SolrTestCaseJ412 thought Blob tests are good practice
it is a test, it is good to have large tests), and the developers of multiple
ests thought they should not be maintained unless they malfunction
it is a test, so no need to really think about its complexity, the tests work
ell, etc.). Meanwhile, others (e.g., a Lucene developer) believe tests are
mportant and especially this class has a key role in Lucene. So, it needs to be
roperly refactored. Although an agreement has not been reached in the

11 The full class name is org.eclipse.cdt.debug.mi.core.
command.CommandFactory.

12 The full class name is org.apache.solr.SolrTestCaseJ4.

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.
Table 14
Top-10 frequently appeared features in top-10 important features of XAI for Blob prioritization.

Rank AutoSpearman AS_Reductive

Metric Category Proportion Metric Category Proportion

1 RFC Coupling 99% NF Change 99%
2 WMC Complexity, Size 98% RFC Coupling 99%
3 CBO Coupling 93% LOC Size 93%
4 C3 Cohesion 85% CBO Coupling 85%
5 LOC Size 74% WMC Complexity, Size 74%
6 num_final_static_attr Size 70% NOAM Size 70%
7 NOAM Size 58% NOCS_package Size 58%
8 NOCS_package Size 54% WOC Complexity 54%
9 TCC Cohesion 62% TCC Cohesion 51%
10 WOC Complexity 58% num_final_static_attr Size 39%
Table 15
Top-11 frequently appeared features in top-11 important features of XAI for Shotgun Surgery prioritization.
Rank AutoSpearman AS_Reductive

Metric Category Proportion Metric Category Proportion

1 AVGCS Change 100% AVGCS Change 99%
2 is_test Testing 86% is_test Testing 98%
3 persistence Change 75% persistence Change 76%
4 DSC Change 63% TCC Cohesion 63%
5 NOCS_package Size 54% DSC Change 58%
6 TCC Cohesion 51% LOCNAMM Size 37%
7 num_constructor_NotDC Size 37% MPC Coupling 36%
8 LOCNAMM Size 35% NOCS_package Size 34%
9 MPC Coupling 34% CBO Coupling 34%
10 CFNAMM Coupling 32% num_standard_design_methods Size 34%
11 WOC Complexity 30% num_constructor_DC Size 29%
Fig. 9. The XAI results of CommandFactory prioritization.
Table 16
The 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 of different aspects.

Complex Class Shotgun Surgery Spaghetti Code Blob

Cohesion 100% 83% 0% 86%
Testing 3% 100% 0% 61%
Production 26% 13% 0% 25%
Change 0% 100% N/A (not mentioned) 100%
Coupling 100% 73% 0% 100%
Size 100% 100% 99% 100%
Complexity 98% 51% 81% 96%

industry, in empirical studies of academia, it is generally accepted that
test quality is worth improving (Wu et al., 2022). It is a huge challenge
to inform XAI users about some information they do not consider useful
but actually important (Dam et al., 2018).

Sometimes, developers do not know how to interpret code smells
with complex causes. For example, the majority of Blob instances are
discarded due to the overgeneralized comments, because they cannot
clearly identify the technical debt in the code. Meanwhile, many devel-
opers considered the reasons more related to other smells while rating
Shotgun Surgery criticalities (e.g., class does too much, the code is complex,
documentation is lacking and it makes hard to understand some methods,
17
and so on). Moreover, developers tend to focus on code structure issues
rather than other factors. For example, a major symptom of Shotgun
Surgery is that it triggers changes. However, change factors are not
major concerns of developers, and they account for only 2% in Shotgun
Surgery comments according to Table 4.

On the one hand, we may need an additional set of features to
capture the preferences of individual developers from a personalized
perception. For example, for developers who only perform refactoring
on defective classes, recommending defect-prone classes may be more
useful. On the other hand, although the adaptation to the developers’
perception is vital, the reaction toward their opinions should be recon-
sidered. We may need to guide them if they could not really interpret
the problems, which calls for the disruptiveness of XAI explanations.
In terms of disruptiveness, although we cannot reach the original de-
velopers and ask whether the explanations provide additional insights,
it is very likely that the ignored change aspects of XAI explanations of
Shotgun Surgery will be helpful for them to make SQA decisions. We
believe that under the condition that XAI explanations are perceived
as trustworthy by developers, further study should be conducted on
whether XAI could help and inspire developers to make actionable
decisions.

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.

7

‘
p
t
c
f
r

m
S

d
p
c
v
a
v
s

m
r
m
(
r
f
l
b
c
r
p
t

F

m

Fig. 10. Examples of contrastive explanations for wrong predictions.
.4. Providing contrastive (why-not) explanations for wrong predictions

Molnar (2022) suggested human-friendly explanations should be
‘contrastive’’ (Lipton, 1990), i.e., XAI should be able to answer why a
rediction is made instead of another one. Although we cannot evaluate
he original developers’ opinions toward contrastive explanations, we
an inspect the cases in which models make predictions that are dif-
erent from the developers’ annotations. Thus, we can discuss whether
easonable contrastive explanations could be generated.

For a Blob class called FILTERFROMFILE,13 the developer com-
ented Too many LOC, it should be refactored, and annotated it with a
EVERE criticality. In contrast, the model makes a MEDIUM prediction.

Instead of checking why the model makes its prediction, the developer
may ask why the prediction is not SEVERE. The inset (a) of Fig. 10
depicts the feature importance of why the prediction is not SEVERE.
Although LOC is also an important feature for the model to make its
ecision, the actual LOC value is causing the model to make a lower
riority prediction. After checking the average values of LOC for code
omponents in different criticalities, we find that the average LOC
alues for the SEVERE, MEDIUM, NON-SEVERE criticalities for Blob
re 2537, 1084, and 1036 respectively. Thus, we infer that the LOC
alue smaller than 1000 is not considered a characteristic of SEVERE
mell by the classifier.

For another Blob class called L3,14 the developer commented the
odifications to this class are generally simple, that is why we do not
efactor it, and annotated it with a NON-SEVERE criticality. Instead, the
odel makes a MEDIUM prediction. The contrastive explanation in inset

b) of Fig. 10 suggests that the number of fixes (NF) is one of the major
easons that the prediction is not NON-SEVERE, which indicates that
ixes are performed frequently in this class. After checking the commit
ogs, we find that the modifications are logically simple modifications
ut may cost a lot of effort. For example, to fix a bug15 related to this
lass concerning Map-Reduce query inconsistency between 2 systems, it
equires 187 additions and 195 deletions among 13 classes in the same
ackage. Thus, we believe this contrastive explanation may encourage
he developer to reconsider the condition of the class.

13 The full class name is org.apache.pig.test.utils.
ILTERFROMFILE.
14 The full class name is org.apache.pig.test.pigmix.
apreduce.L3.
15
18

https://issues.apache.org/jira/browse/PIG-3915.
Although the up-mentioned cases show contrastive explanations are
informative, we cannot conclude that they are always useful. Mean-
while, prior work (Riveiro & Thill, 2021) also discovered that for wrong
predictions, providing only contrastive explanations is not enough for
improving end-users trust in the models. However, their experiment
is performed in a relatively simple task, i.e., classification of texts,
which is different from our work. We believe how and to what extent
contrastive explanations can contribute to narrowing the gap between
XAI and developers would be worth exploring in future work.

7.5. Using rule-based XAI approaches to prioritize code smells

The decision-making process of rule-based approaches is transparent
to developers by nature. Compared with black-boxed learning-based
prediction models such as Random Forest, it has huge advantages in
interpretability.

For Complex Class and Spaghetti Code, using only 3 to 5 features will
be able to generate an explanation that meets developers’ expectations
to a great extent. Thus, we are curious about whether simpler rule-
based methods may also work for such issues. We assess correlations
of every feature with respect to the criticality, and we find that only 1
feature (i.e., NF) has a high correlation (> 0.7) with the criticality of the
Spaghetti Code smell, and no feature has such high correlation with the
criticality of Complex Class. Thus, we intend to explore whether highly
correlated values would be helpful for rule-based XAI to better fit the
predicted class.

We exploit a rule visualizing XAI technique called RuleMatrix (Ming
et al., 2019) to generate explanations from models. RuleMatrix is a
matrix-based visualization of generated rules from the black-box model
to help users navigate and verify the rules and the model, and it
achieved high fidelity and evidence on the tested datasets. We use
the same dataset in our previous experiments to build an MLP (Multi-
Layer Perceptron) model (as suggested in the demo and the paper), and
explain the model using RuleMatrix. However, the approach derives low
fidelity (i.e., the approximation of a given model) and low evidence
(i.e., the accuracy of the generated rules). For example, it achieves
38% accuracy (ACC) for Complex Class, and 61% ACC for Spaghetti
Code. More details are included in the online appendix.16 Thus, from
our preliminary result, we conclude that rule-based approaches such as
RuleMatrix are not practical, even for simple SQA tasks.

16 https://github.com/SORD-src/ESWA23.

https://issues.apache.org/jira/browse/PIG-3915
https://github.com/SORD-src/ESWA23

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.
7.6. The opportunities and challenges of XAI for SQA

XAI could be used to explain how SQA models behave and diagnose
them. From the results of our study and the findings of prior SQA
studies (Jiarpakdee et al., 2022, 2021; Rajbahadur et al., 2022), we
believe XAI approaches can reveal model behavior while enabling AI
and data experts in software analytics to understand why the model
makes predictions technically. Through diagnosing the models, they
may tune the models to obtain more reasonable behaviors (e.g., the
process of discarding project level features in RQ1). Model diagnosing
could be a major purpose of XAI to reveal the technical details and
explain why the model performs well (or badly).

XAI explanations could be aligned to developers’ expectations. From
the results in our work, we believe XAI results for well-performed mod-
els could assist code smell prioritization for developers, especially for
issues with simpler causes. However, for complex smells, interpreting
the results may be challenging for novice users.

XAI has the potential to discover ignored factors related to SQA
problems. For example, change history for Shotgun Surgery prioriti-
zation in our work is rarely mentioned by developers, but they are
actually important factors to prioritize this smell. Furthermore, re-
searchers (Jiarpakdee et al., 2022) still hoped XAI could discover new
findings in SQA and build empirical theories. We believe the major
challenge of this goal is that the explanations from developers and XAI
may be seriously misaligned (e.g., in terms of complexity, concerning
issues, the granularity of measurement, and so on), and thus developers
may perceive them as untrustworthy or less useful. Moreover, if rele-
vant or determining factors of an SQA problem cannot be captured, we
can hardly build any reliable empirical theories. At present, we believe
investigating the developers’ expectations of SQA models and capturing
these factors is the most urgent task.

Based on the up-mentioned discussions, we suggest several fu-
ture research directions of XAI for SQA. Since ‘‘bugs are not the
same’’ (Catolino et al., 2019), i.e., the root cause, impact, and represen-
tation of bugs in terms of code characteristics and project information
are not similar. Such differences do not only exist in bugs, but also in
other SQA issues such as code smell, e.g., characteristics and causes
of smells differ in different domains or contexts of applications. While
studies have already been conducted on the root causes of different
kinds of SQA issues, little is known about how to capture the root
cause of them through feature engineering. We think our present goal
of XAI for SQA should shift from explaining general defects, and it
should be set in the context of generating reliable explanations for SQA
tasks in narrowed scope or divided subtasks (e.g., specific issues in
a given context) through (1) more detailed empirical studies on bugs
with different origins or in a different domain, and (2) more advanced
technologies in feature engineering or automatic feature extraction
approaches.

8. Threats to validity

In this section, we clarify the threats to the validity of our work.
Construct validity refers to the relationship between theory and ob-
servation. Conclusion validity is related to treatment and outcome.
Internal validity concerns the variables that could affect the outcome.
External validity is about the generalizability of results.

8.1. Construct validity

The reliability of SHAP may be a threat to construct validity. CA ap-
proaches were proved reliable in related study (Jiarpakdee et al., 2022),
19

and we followed the guidelines to generate reliable explanations.
Table 17
Agreement between SHAP and Information Gain.

Blob Complex Class Spaghetti Code Shotgun Surgery

Top-3 features 75% 75% 60% 75%
Top-10 features 71% 67% 63% 63%

However, the up-mentioned studies did not test Information Gain, i.e., an
algorithm conventionally applied in code smell research to generate
only global feature importance. We also evaluate its agreement (Ra-
jbahadur et al., 2022) in top-3 and top-10 feature importance with
SHAP. From the results in Table 17, we find that the two approaches
may not agree with each other to a great extent (i.e., the agreement
could be lower than 70%). However, we believe these two feature
importance measures are focusing on different aspects. Information
Gain is calculated based on data rather than models, and it measures
the features’ capability of eliminating the uncertainty of the dataset.
Instead, SHAP measures directly the behavior of models over local
instances, and we believe it is more appropriate in our paper since we
need to specifically explain why the model makes the prediction for
every instance.

Meanwhile, the lack of theory to measure the outcome of XAI for
SQA may be a problem. First, in terms of the concerned aspects of
developers summarized and categorized in Table 2, they may be biased
due to a limited number of samples. However, since both structural
and contextual concerns are covered in our manual assessment, we
believe to a great extent, our summarization can match with the
observation of practitioners. Second, measuring the gap in the gran-
ularity of the concerned aspects may not be ideal for practitioners,
e.g., although a practitioner may focus on history changes, they may
not focus on the number of fixes (NF) in history. NF is an important
feature that improves the performance of Blob explanation in Table 14.
Such an explanation may not be regarded as precise. According to
the observation in Pecorelli et al. (2020), features may ‘‘simulate’’
others to some extent, and we think simulating behaviors of features
in the same category can be tolerated because they are closely re-
lated. In practice, we may provide an explanation for each feature
and explain the effect of such ‘‘simulation’’, or we should present
the features of the same categories discarded by AutoSpearman due to
high correlation. The design of the interactive interface is within the
scope of HCI research rather than this study. Third, there might be
other aspects to measure the gap between explanations of XAI and
practitioners, and in some cases, such differences in explanations may
become a good feature providing extra insights (i.e., disruptiveness)
for practitioners. However, we believe practitioners are willing to see
their concerns in the explanations in the first place, and it proves the
classifier is trustworthy. Otherwise, the developers will not be able to
confirm whether the ‘‘insights’’ are actually random errors generated by
chance.

8.2. Conclusion validity

Since the MSR dataset is not fully available, and we cannot recover
the missing process and product metrics (see Section 4.2.1 for details),
which may cause an overestimation of the gap since some aspects may
be covered by the missing features. However, such features are proved
trivial in the MSR paper, and thus they are less likely to appear in
the top important features. Moreover, except for the Refactorable
feature, the missing features can be classified into the major aspects
that are already covered by other features. Currently, the models we
build are already state-of-the-art according to performance metrics.
Thus, we think they are not likely to affect the conclusion to a great
extent.

Specifically, we need to explain the threat of missing the Refac-
torable feature since it may fit the sub-category with the same name

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.

a
t
d
c
m
r
r
i
(
d

n
c
p
s
w
s

8

w
o
S
n
d
t
w
o
c
a
o
c

8

t
c
e
c
d
c
t

c
t
w
m
t
n
c
p
t

m
a

e

i
n
b
e
c
w
M
f
l
t

r
s
d
s
G
f
c
s
c
a
a

9

a
w
d
c
r
c
t
f
p

e
c
f
d
a
c
e
e
m

p
i
s
a
n
c
o
w
d
m

in Table 3. The authors used a code smell detector called JDeodor-
nt (Fokaefs et al., 2011) to generate this feature since it is a detec-
or that also provides refactoring suggestions. However, we think the
evelopers’ concerns in the refactorable sub-category can hardly be
overed by the feature, which only focuses on the technical aspects
easurable by the structure and complexity metrics. The barriers to

efactoring are the feasibility to refactor and the limited resources for
efactoring rather than the ability of detection tools. When developers
n this dataset mention they cannot refactor, they usually mean by
1) refactoring should be postponed because of delivery deadlines or
evelopment plans (e.g., I would postpone the refactoring till it is stable),

and (2) they cannot understand the code or architecture (e.g., this is
aturally complex, I would not know how to refactor it). To capture the
haracteristic of the first issue, we should capture more development
rocess, community, and developer features. For the second issue,
uch difficulties could be reflected by complexity metrics. As a result,
e think the threat of missing the Refactorable feature is not

ignificant.

.3. Internal validity

The reliability of subjective aspects is an unavoidable threat to our
ork. First, the annotations and comments from the original devel-
pers may contain errors or biases, e.g., the biases we discussed in
ection 7.2. In terms of errors, we find that a class from Apache Pig
amed TezDagBuilder17 is mistakenly considered as a test class (the
eveloper commented since this is a test, it is ok for us to have it a bit larger
han other classes), and such error should impact the validity of our
ork. However, through careful manual identification, we find no more
bvious errors in the dataset. Second, our identification of developers’
omments may also include bias. We involve experienced developers
nd researchers to address it, and we also provide a replication package
f our study for the research community to replicate our results in other
ontexts.

.4. External validity

A notable generalizability issue is that this study is conducted in
he context of cross-project prediction, which is designed to cope with
old start problems. Apparently, there are other scenarios to consider,
.g., studies in within-project scenarios should be conducted to repli-
ate the results. Since validated large-scale within-project code smell
ataset is hard to collect, this threat is unavoidable in the context of
ode smell at present. The reason that we use the MSR dataset rather
han other ones is also described in Section 4.

Another generalizability issue is to what extent the findings in this
ase study can be transferred to other notable SQA analytics tasks. In
he scope of machine learning approaches relies on feature engineering,
e believe generalizability is determined by (1) to what extent the
ajor concerns of practitioners about these problems are reflected in

he features or data used to make predictions, and (2) how precise and
arrowed the prediction target is. If the features do not include such
oncerns, the gap will be much larger, and it can hardly be closed. If the
rediction target is overgeneralized, the explanations will be unlikely
o be informative and helpful, which is also discussed in Section 7.6.

In the scope of deep learning approaches that do not rely on
anual feature engineering to such a great extent, our conclusion is not

pplicable since these methods react in a different manner. Although

17 The full class name is org.apache.pig.backend.hadoop.
xecutionengine.tez.TezDagBuilder.
20

d

t is possible to visualize co-reacting neurons to observe how neural
etworks act internally (Dam et al., 2018), and their behavior may
e similar to developers in tasks such as code summarization (Richter
t al., 2023), explaining the actual aim of them acting as a whole is still
hallenging (Umer et al., 2020). For example, we can hardly conclude
hat useful information the models can learn in each propagation.
oreover, the existing dataset for code smell prioritization is not ideal

or such approaches. The scale of the dataset is limited and deep
earning approaches require an excessively large number of samples for
raining (i.e., data-hungry Munappy et al., 2019).

Moreover, recent advances in Large Language Model (LLM) also
eveal its potential to comprehend and interpret code. Notable models
uch as GPT-4 and Vicuna could assess code quality and explain their
ecisions in detailed natural language. We attempted to perform a
ystematic evaluation using LLM, and we also tested the validity of
PT-4 and Vicuna-13b in code smell prioritization tasks. However, we

ind that although LLMs could explain their judgment, these approaches
annot produce consistent results, even within the same session. Con-
equently, although their output is more interpretable, they are not
omprehensive. Thus, we believe they are not ready for such tasks
nd require fine-tuning. Afterward, they may have the potential of
chieving better XAI for SQA.

. Conclusion

We conducted a case study of code smell prioritization to investigate
nd narrow the gap in explanations between XAI and developers. First,
e inspected developers’ comments on code smell criticalities from a
ataset annotated by original developers, and summarized their major
oncerns. Then, we measured the gap by checking if inspecting a
easonable number of top important features in XAI explanations could
over the major concerns of original developers. Finally, we modified
he AutoSpearman feature selection approach for XAI to preserve the
eatures that could reflect developers’ major concerns as much as
ossible and narrowed the gap.

Result showed the gap between XAI explanations and developers’
xpectations is obvious for code smell prioritization, even if the most
oncerned aspects of developers could be covered by fine-grained
eatures. Fortunately, the gap could be narrowed by adapting to the
evelopers’ concerns in feature selection, and the explanations could
chieve reasonable 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (> 70%) of developers’ concerns with ac-
eptable 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦. As a result, for smells with simpler causes, a simple
xplanation (e.g., inspecting top-3 or top-5 features) is enough. How-
ver, explaining smells with complex or controversial causes requires
ore expertise to inspect around 10 features.

Based on case studies, we also inferred that current XAI for SQA
ractice is ideal for diagnosing models, but it is not ready for explain-
ng general SQA issues with complex or diverse causes (e.g., general
oftware defects), no matter the causes could be captured by more
dvanced feature engineering approaches or not. Moreover, we thought
arrowing the prediction target to more specific problems (e.g., a
ertain type of bug or smell) in a given context (e.g., a specific type
f software) would be more reasonable and practical. Meanwhile,
e also called for more empirical studies for specific problems in
ifferent contexts to provide more evidence for building adaptive XAI
odels.

Future work includes (1) collecting commented single project
atasets in industrial settings with clear guidelines of criticality anno-

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.
Table 18
Overview of the analyzed projects.
Project OSS foundation Number of commits Number of developers Number of classes KLOC

Mahout Apache 3054 55 813 204
Cassandra Apache 2026 128 586 111
Lucene Apache 3784 62 5506 142
Cayenne Apache 3472 21 2854 542
Pig Apache 2432 24 826 372
Jackrabbit Apache 2924 22 872 527
Jena Apache 1489 38 663 231
CDT Eclipse 5961 31 1415 249
CXF Eclipse 2276 21 655 106
Fig. 11. A screenshot of the demo tool.
tation, (2) developing an IDE-based plugin for code smell prioritization
and refactoring, and (3) validating whether IDE-based XAI techniques
could help developers recognize severe smells in real-world scenarios.

CRediT authorship contribution statement

Zijie Huang: Conceptualization of this study, Methodology, Soft-
ware. Huiqun Yu: Supervision. Guisheng Fan: Writing – review
& editing. Zhiqing Shao: Funding, Review & editing. Mingchen Li:
Data curation, Visualization. Yuguo Liang: Visualization, Investiga-
tion, Original draft.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Guisheng Fan reports financial support was provided by the Natural Sci-
ence Foundation of Shanghai. Huiqun Yu reports financial support was
provided by the Capacity Building Project of Local Universities Science
and Technology Commission of Shanghai Municipality. Guisheng Fan
reports was provided by the Research Programme of National Engineer-
ing Laboratory for Big Data Distribution and Exchange Technologies.
Huiqun Yu reports was provided by the Shanghai Municipal Special
Fund for Promoting High Quality Development.

Data availability

Data released on GitHub.
21
Appendix A. Features and projects used for prediction

The evaluated projects are listed in Table 18. The features used for
prediction are available in Table 19.

Appendix B. Online appendix and replication package

The online appendix and the replication package18 of this paper are
available as a GitHub repository. It contains the procedural data and
result of manual assessment, the code for generating experimental data,
model performance, the code of modified AutoSpearman, and various
additional tests (e.g., the agreement between SHAP and Information
Gain, the result of RuleMatrix application, and the correlation between
features and prediction targets).

Appendix C. Demo tool

The demo tool.19 of this paper is also available as a GitHub reposi-
tory. A screenshot is available in Fig. 11 Practitioners could input their
GitHub repository using Java code, and the tool will output predictions
and explanations for every class. The tool calculates code and process
metrics and makes predictions in real time.

18 https://github.com/SORD-src/ESWA23.
19 https://github.com/SORD-src/ESWA23_demo.

https://github.com/SORD-src/ESWA23
https://github.com/SORD-src/ESWA23_demo

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.

A

Table 19
Features and their definitions.

Feature name Category Description

ATFD Coupling The number of unrelated attributes (foreign data) accessed directly or by invoking accessor methods.
AVG_CS (Avg-commit-size) Change The average number of classes that co-changed in commits involving a class.
C3 Cohesion The average cosine similarity computed among all method pairs of a class.
CBO Coupling The number of classes to which it is coupled.
CFNAMM Coupling The number of called not accessor or mutator methods declared in unrelated classes respect to the measured one.
DIT Complexity The maximum length from the class node to the root of its inheritance hierarchy tree.
DSC Change The average number of distinct subsystems in which the committers of a class made changes.
FANOUT Coupling The number of called classes.
is_controller Production Whether the class is a controller class.
is_external Production Whether the class is extrinsic or copied from other systems.
is_procedural Production Whether the class contain procedural instructions.
is_test Testing Whether the class is a test class or it is designed to facilitate testing.
is_util Production Whether the class is a utility class.
is_static N/A Whether the class is a static class.
LCOM5 Cohesion Lack of cohesion in methods.
LOC Size The number of lines of code of a class, including blank lines and comments.
LOC_package Size The number of lines of code of a package.
LOCNAMM Size The number of lines of code of a class excluding accessor and mutator methods and corresponding comments.
MPC Coupling Number of method calls made by a class to external classes of the system.
NC (number-changes) Change Number of commits in the change history of the system involving a class.
NCOM (number-committers) Change Number of distinct developers who performed commits on a class in the change history of the system.
NF (number-fixes) Change Number of bug fixing activities performed on a class in the change history of the system.
NIM Complexity The number of inherited methods.
NMO Size The number of methods that have been overridden.
NOA Size The number of attributes of a class.
NOAM Size The number of accessor (getter and setter) methods of a class.
NOC Size The number of children counts the immediate subclasses subordinated to a class in the class hierarchy.
NOCS Size The number of nested classes of a class.
NOCS_package Size The number of classes of a package.
NOI_package Size The number of interfaces declared in a package.
NOII Size The number of implemented interfaces by a class.
NOM Size The number of methods defined locally in a class.
NOM_package Size The number of methods defined locally in a package.
NOMNAMM Size The number of methods defined locally in a class, excluding accessor or mutator methods.
NOMNAMM_package Size The number of methods defined locally in a package, excluding accessor or mutator methods.
NOPA Size The number of public attributes of a class.
num_abstract_methods Size The number of abstract methods by a class.
num_constructor_DC Size The number of constructor methods by a class.
num_constructor_NotDC Size The number of non-constructor methods by a class.
num_final_attr Size The number of final attributes by a class.
num_final_methods Size The number of final methods by a class.
num_final_not_static_attr Size The number of final and non-static attributes by a class.
num_final_not_static_methods Size The number of final and non-static methods by a class.
num_final_static_attr Size The number of final and static attributes by a class.
num_final_static_methods Size The number of final and static methods by a class.
num_not_abstract_not_final_methods Size The number of non-abstract and non-final methods by a class.
num_not_final_not_static_attr Size The number of non-final and non-static attributes by a class.
num_not_final_not_static_methods Size The number of non-final and non-static methods by a class.
num_not_final_static_methods Size The number of non-final and static methods by a class.
num_package_visibility_attr Size The number of attributes with default visibility by a class.
num_package_visibility_methods Size The number of methods with default visibility by a class.
num_private_visibility_attr Size The number of private attributes by a class.
num_private_visibility_methods Size The number of private methods by a class.
num_protected_visibility_attr Size The number of protected attributes by a class.
num_protected_visibility_methods Size The number of protected methods by a class.
num_public_visibility_methods Size The number of public methods by a class.
num_standard_design_methods Size The number of methods intended for duplication or repetitive manufacture.
num_static_attr Size The number of static attributes by a class.
num_static_methods Size The number of static methods by a class.
num_static_not_final_attr Size The number of static and non-final attributes by a class.
persistence Change Number of subsequent major/minor releases in which a certain smell affects a class.
Read. (Readability) Complexity Measure of source code readability based on 25 features, see Buse and Weimer (2010) for computational details.
RFC Coupling Response for a class, the number of methods that can be invoked in response to a message to an object of the class.
TCC Cohesion Tight class cohesion.
WMC Size, Complexity The sum of e Cyclomatic Complexity (CYCLO) of the methods that are defined in the class.
WMCNAMM Size, Complexity The WMC metrics calculated over non-accessor or mutator methods.
WOC Complexity The number of ‘‘functional’’ public methods divided by the total number of public members.
A
A

References

Alazba, A., & Aljamaan, H. (2021). Code smell detection using feature selection and
stacking ensemble: An empirical investigation. Information and Software Technology,
138, Article 106648.

leithan, R. (2021). Explainable just-in-time bug prediction: Are we there yet? In
Proc. IEEE/ACM 43rd international conference on software engineering: companion
22
proceedings (ICSE-Companion) (pp. 129–131).
Ambsdorf, J., Munir, A., Wei, Y., Degkwitz, K., Harms, H. M., Stannek, S., Ahrens, K.,

Becker, D., Strahl, E., Weber, T., & Wermter, S. (2022). Explain yourself! effects of
explanations in human-robot interaction. In Proc. 31st IEEE international conference
on robot and human interactive communication (RO-MAN) (pp. 393–400).

ntinyan, V. (2021). Hypnotized by lines of code. Computer, 54(1), 42–48.
zeem, M. I., Palomba, F., Shi, L., & Wang, Q. (2019). Machine learning techniques for

code smell detection: A systematic literature review and meta-analysis. Information

http://refhub.elsevier.com/S0957-4174(23)02142-5/sb1
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb1
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb1
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb1
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb1
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb2
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb2
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb2
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb2
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb2
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb3
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb3
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb3
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb3
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb3
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb3
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb3
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb4
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb5
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb5
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb5
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb5

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.

D

d

and Software Technology, 108, 115–138.
Barbez, A., Khomh, F., & Guéhéneuc, Y.-G. (2020). A machine-learning based ensemble

method for anti-patterns detection. Journal of Systems and Software, 161, Article
110486.

Brown, W. H., Malveau, R. C., McCormick, H. W. S., & Mowbray, T. J. (1998).
AntiPatterns: Refactoring software, architectures, and projects in crisis. Boston, MA:
John Wiley & Sons, Inc..

Buse, R. P., & Weimer, W. R. (2010). Learning a metric for code readability. IEEE
Transactions on Software Engineering, 36(4), 546–558.

Catolino, G., Palomba, F., Zaidman, A., & Ferrucci, F. (2019). Not all bugs are the
same: Understanding, characterizing, and classifying bug types. Journal of Systems
and Software, 152, 165–181.

Dam, H. K., Tran, T., & Ghose, A. (2018). Explainable software analytics. In Proc.
40th international conference on software engineering: new ideas and emerging results
(ICSE-NIER) (pp. 53–56).

de Mello, R., Oliveira, R., Uchôa, A., Oizumi, W., Garcia, A., Fonseca, B., & de Mello, F.
(2022). Recommendations for developers identifying code smells. IEEE Software,
2–10.

i Nucci, D., Palomba, F., Tamburri, D. A., Serebrenik, A., & De Lucia, A. (2018).
Detecting code smells using machine learning techniques: Are we there yet? In
IEEE 25th international conference on software analysis, evolution and reengineering
(SANER) (pp. 612–621).

os Santos, G. E., Figueiredo, E., Veloso, A., Viggiato, M., & Ziviani, N. (2020).
Understanding machine learning software defect predictions. Automated Software
Engineering, 27(3), 369–392.

Er, L., Laberge, G., Roy, B., Khomh, F., Nikanjam, A., & Mondal, S. (2022). Why
don’t XAI techniques agree? Characterizing the disagreements between post-hoc
explanations of defect predictions. In Proc. 38th IEEE international conference on
software maintenance and evolution (ICSME) (pp. 444–448).

Fakhoury, S., Arnaoudova, V., Noiseux, C., Khomh, F., & Antoniol, G. (2018). Keep
it simple: Is deep learning good for linguistic smell detection? In Proc. 25th
international conference on software analysis, evolution and reengineering (SANER) (pp.
602–611).

Fokaefs, M., Tsantalis, N., Stroulia, E., & Chatzigeorgiou, A. (2011). Jdeodorant:
Identification and application of extract class refactorings. In Proc. of the 33rd
international conference on software engineering (ICSE) (pp. 1037–1039).

Fontana, F. A., Ferme, V., Zanoni, M., & Roveda, R. (2015). Towards a prioritization
of code debt: A code smell intensity index. In Proc. IEEE 7th international workshop
on managing technical debt (MTD) (pp. 16–24).

Fontana, F. A., & Zanoni, M. (2017). Code smell severity classification using machine
learning techniques. Knowledge-Based Systems, 128, 43–58.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999). Refactoring: Improving
the design of existing code. Boston, MA: Addison-Wesley.

Gao, Y., Zhu, Y., & Yu, Q. (2022). Evaluating the effectiveness of local explana-
tion methods on source code-based defect prediction models. In IEEE/ACM 19th
international conference on mining software repositories (MSR) (pp. 640–645). IEEE.

Gosiewska, A., & Biecek, P. (2019). iBreakDown: Uncertainty of model explanations
for non-additive predictive models. arXiv:1903.11420. URL: http://arxiv.org/abs/
1903.11420.

Guimarães, E. T., Vidal, S. A., Garcia, A. F., Pace, J. A. D., & Marcos, C. A.
(2018). Exploring architecture blueprints for prioritizing critical code anomalies:
Experiences and tool support. Software - Practice and Experience, 48(5), 1077–1106.

Ichtsis, A., Mittas, N., Ampatzoglou, A., & Chatzigeorgiou, A. (2022). Merging smell
detectors: Evidence on the agreement of multiple tools. In Proc. 5th international
conference on technical debt (TechDebt) (pp. 61–65).

Jain, S., & Saha, A. (2021). Improving performance with hybrid feature selection and
ensemble machine learning techniques for code smell detection. Science of Computer
Programming, 212, Article 102713.

Jiarpakdee, J., Tantithamthavorn, C., Dam, H. K., & Grundy, J. (2022). An empirical
study of model-agnostic techniques for defect prediction models. IEEE Transactions
on Software Engineering, 48(1), 166–185.

Jiarpakdee, J., Tantithamthavorn, C., & Grundy, J. (2021). Practitioners’ perceptions of
the goals and visual explanations of defect prediction models. In Proc. IEEE/ACM
18th international conference on mining software repositories (MSR) (pp. 432–443).

Jiarpakdee, J., Tantithamthavorn, C., & Treude, C. (2020). The impact of automated
feature selection techniques on the interpretation of defect models. Empirical
Software Engineering, 25(5), 3590–3638.

Kocielnik, R., Amershi, S., & Bennett, P. N. (2019). Will you accept an imperfect ai?
Exploring designs for adjusting end-user expectations of AI systems. In Proc. 2019
CHI conference on human factors in computing systems (CHI) (pp. 1–14).

Kovačević, A., Slivka, J., Vidaković, D., Grujić, K.-G., Luburić, N., Prokić, S., & Sladić, G.
(2022). Automatic detection of long method and god class code smells through
neural source code embeddings. Expert Systems with Applications, 204, Article
117607.

Krippendorff, K. (1970). Estimating the reliability, systematic error and random error
of interval data. Educational and Psychological Measurement, 30(1), 61–70.

Krippendorff, K. (2011). Computing Krippendorff’s alpha-reliability. URL: https://
repository.upenn.edu/asc_papers/43.
23
Kulesza, T., Stumpf, S., Burnett, M., Yang, S., Kwan, I., & Wong, W.-K. (2013). Too
much, too little, or just right? Ways explanations impact end users’ mental models.
In Proc. 2013 IEEE symposium on visual languages and human centric computing
(VLHCC) (pp. 3–10).

Lanza, M., Marinescu, R., & Ducasse, S. (2005). Object-oriented metrics in practice.
Springer Science & Business Media.

Lewowski, T., & Madeyski, L. (2022). How far are we from reproducible research
on code smell detection? A systematic literature review. Information and Software
Technology, 144, Article 106783.

Lipton, P. (1990). Contrastive explanation. Royal Institute of Philosophy Supplements, 27,
247–266.

Liu, H., Jin, J., Xu, Z., Bu, Y., Zou, Y., & Zhang, L. (2021). Deep learning based code
smell detection. IEEE Transactions on Software Engineering, 47(9), 1811–1837.

Liu, H., Xu, Z., & Zou, Y. (2018). Deep learning based feature envy detection. In Proc.
33rd IEEE/ACM international conference on automated software engineering (ASE) (pp.
385–396).

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model
predictions. In Proc. 31st international conference on neural information processing
systems (NIPS) (pp. 4768–4777).

Madeyski, L., & Lewowski, T. (2020). MLCQ: Industry-relevant code smell data set. In
Proc. 24th international conference on evaluation and assessment in software engineering
(EASE) (pp. 342–347).

Maltbie, N., Niu, N., Van Doren, M., & Johnson, R. (2021). XAI tools in the public
sector: A case study on predicting combined sewer overflows. In Proc. 29th ACM
joint meeting on european software engineering conference and symposium on the
foundations of software engineering (ESEC/FSE) (pp. 1032–1044).

Ming, Y., Qu, H., & Bertini, E. (2019). RuleMatrix: Visualizing and understanding
classifiers with rules. IEEE Transactions on Visualization and Computer Graphics,
25(1), 342–352.

Moha, N., Gueheneuc, Y.-G., Duchien, L., & Le Meur, A.-F. (2010). DECOR: A method
for the specification and detection of code and design smells. IEEE Transactions on
Software Engineering, 36(1), 20–36.

Molnar, C. (2022). Interpretable machine learning: A guide for making black box models
explainable (2nd ed.). URL: https://christophm.github.io/interpretable-ml-book/
explanation.html#good-explanation.

Munappy, A., Bosch, J., Olsson, H. H., Arpteg, A., & Brinne, B. (2019). Data
management challenges for deep learning. In Proc. 45th euromicro conference on
software engineering and advanced applications (SEAA) (pp. 140–147).

Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., & De Lucia, A. (2014). Do they
really smell bad? A study on developers’ perception of bad code smells. In Proc.
30th IEEE international conference on software maintenance and evolution (ICSME)
(pp. 101–110).

Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A., & Poshyvanyk, D.
(2013). Detecting bad smells in source code using change history information. In
Proc. 28th IEEE/ACM international conference on automated software engineering (ASE)
(pp. 268–278).

Palomba, F., Bavota, G., Penta, M. D., Oliveto, R., Poshyvanyk, D., & De Lucia, A.
(2015). Mining version histories for detecting code smells. IEEE Transactions on
Software Engineering, 41(5), 462–489.

Palomba, F., Panichella, A., De Lucia, A., Oliveto, R., & Zaidman, A. (2016). A textual-
based technique for smell detection. In Proc. IEEE 24th international conference on
program comprehension (ICPC) (pp. 1–10).

Palomba, F., Panichella, A., Zaidman, A., Oliveto, R., & Lucia, A. D. (2018). The scent
of a smell: An extensive comparison between textual and structural smells. IEEE
Transactions on Software Engineering, 44(10), 977–1000.

Palomba, F., Zanoni, M., Fontana, F. A., De Lucia, A., & Oliveto, R. (2019). Toward a
smell-aware bug prediction model. IEEE Transactions on Software Engineering, 45(2),
194–218.

Papenmeier, A., Kern, D., Englebienne, G., & Seifert, C. (2022). It’s complicated: The
relationship between user trust, model accuracy and explanations in AI. ACM
Transactions on Computer-Human Interaction, 29(4), Article 35.

Pecorelli, F., Palomba, F., Khomh, F., & De Lucia, A. (2020). Developer-driven code
smell prioritization. In Proc. IEEE/ACM 17th international conference on mining
software repositories (MSR) (pp. 220–231).

Perera, H., Hussain, W., Mougouei, D., Shams, R. A., Nurwidyantoro, A., & Whittle, J.
(2019). Towards integrating human values into software: Mapping principles and
rights of GDPR to values. In Proc. IEEE 27th international requirements engineering
conference (RE) (pp. 404–409).

Piotrowski, P., & Madeyski, L. (2020). In A. Poniszewska-Marańda, N. Kryvinska,
S. Jarząbek, & L. Madeyski (Eds.), Software defect prediction using bad code smells:
A systematic literature review. Data-centric business and applications: Towards software
development (Volume 4) (pp. 77–99). Cham: Springer International Publishing.

Rajapaksha, D., Tantithamthavorn, C., Jiarpakdee, J., Bergmeir, C., Grundy, J.,
& Buntine, W. (2022). Sqaplanner: Generating data-informed software quality
improvement plans. IEEE Transactions on Software Engineering, 48(8), 2814–2835.

Rajbahadur, G. K., Wang, S., Oliva, G. A., Kamei, Y., & Hassan, A. E. (2022). The
impact of feature importance methods on the interpretation of defect classifiers.
IEEE Transactions on Software Engineering, 48(7), 2245–2261.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). ‘‘Why should I trust you?’’: Explaining
the predictions of any classifier. In Proc. 22nd ACM SIGKDD international conference
on knowledge discovery and data mining (KDD) (pp. 1135–1144).

http://refhub.elsevier.com/S0957-4174(23)02142-5/sb5
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb6
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb6
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb6
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb6
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb6
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb7
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb7
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb7
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb7
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb7
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb8
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb8
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb8
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb9
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb9
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb9
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb9
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb9
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb10
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb10
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb10
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb10
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb10
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb11
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb11
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb11
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb11
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb11
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb12
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb12
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb12
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb12
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb12
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb12
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb12
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb13
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb13
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb13
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb13
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb13
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb14
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb14
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb14
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb14
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb14
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb14
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb14
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb15
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb15
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb15
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb15
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb15
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb15
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb15
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb16
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb16
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb16
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb16
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb16
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb17
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb17
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb17
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb17
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb17
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb18
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb18
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb18
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb19
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb19
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb19
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb20
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb20
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb20
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb20
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb20
http://arxiv.org/abs/1903.11420
http://arxiv.org/abs/1903.11420
http://arxiv.org/abs/1903.11420
http://arxiv.org/abs/1903.11420
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb22
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb22
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb22
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb22
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb22
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb23
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb23
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb23
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb23
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb23
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb24
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb24
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb24
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb24
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb24
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb25
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb25
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb25
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb25
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb25
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb26
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb26
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb26
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb26
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb26
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb27
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb27
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb27
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb27
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb27
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb28
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb28
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb28
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb28
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb28
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb29
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb29
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb29
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb29
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb29
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb29
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb29
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb30
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb30
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb30
https://repository.upenn.edu/asc_papers/43
https://repository.upenn.edu/asc_papers/43
https://repository.upenn.edu/asc_papers/43
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb32
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb32
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb32
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb32
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb32
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb32
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb32
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb33
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb33
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb33
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb34
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb34
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb34
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb34
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb34
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb35
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb35
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb35
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb36
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb36
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb36
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb37
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb37
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb37
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb37
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb37
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb38
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb38
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb38
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb38
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb38
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb39
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb39
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb39
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb39
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb39
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb40
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb40
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb40
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb40
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb40
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb40
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb40
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb41
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb41
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb41
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb41
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb41
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb42
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb42
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb42
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb42
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb42
https://christophm.github.io/interpretable-ml-book/explanation.html#good-explanation
https://christophm.github.io/interpretable-ml-book/explanation.html#good-explanation
https://christophm.github.io/interpretable-ml-book/explanation.html#good-explanation
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb44
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb44
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb44
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb44
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb44
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb45
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb45
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb45
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb45
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb45
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb45
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb45
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb46
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb46
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb46
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb46
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb46
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb46
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb46
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb47
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb47
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb47
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb47
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb47
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb48
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb48
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb48
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb48
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb48
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb49
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb49
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb49
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb49
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb49
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb50
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb50
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb50
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb50
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb50
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb51
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb51
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb51
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb51
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb51
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb52
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb52
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb52
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb52
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb52
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb53
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb53
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb53
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb53
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb53
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb53
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb53
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb54
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb54
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb54
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb54
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb54
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb54
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb54
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb55
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb55
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb55
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb55
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb55
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb56
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb56
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb56
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb56
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb56
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb57
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb57
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb57
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb57
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb57

Expert Systems With Applications 238 (2024) 121640Z. Huang et al.

R

S

S

S

S

S

S

W

W

W

Y

Y

Y

Y

Z

Richter, C., Haltermann, J., Jakobs, M.-C., Pauck, F., Schott, S., & Wehrheim, H.
(2023). Are neural bug detectors comparable to software developers on variable
misuse bugs? In Proc. 37th IEEE/ACM international conference on automated software
engineering (ASE). Article 9.

Riveiro, M., & Thill, S. (2021). ‘‘That’s (not) the output I expected!’’ on the role of end
user expectations in creating explanations of AI systems. Artificial Intelligence, 298,
Article 103507.

odríguez-Pérez, G., Nagappan, M., & Robles, G. (2022). Watch out for extrinsic bugs!
a case study of their impact in just-in-time bug prediction models on the OpenStack
project. IEEE Transactions on Software Engineering, 48(4), 1400–1416.

ae-Lim, N., Hayashi, S., & Saeki, M. (2016). Context-based code smells prioritization
for prefactoring. In Proc. IEEE 24th international conference on program comprehension
(ICPC) (pp. 1–10).

ae-Lim, N., Hayashi, S., & Saeki, M. (2017a). How do developers select and prioritize
code smells? A preliminary study. In Proc. IEEE 33rd international conference on
software maintenance and evolution (ICSME) (pp. 484–488).

ae-Lim, N., Hayashi, S., & Saeki, M. (2017b). Revisiting context-based code smells
prioritization: On supporting referred context. In Proc. XP2017 scientific workshops
(pp. 1–5).

ae-Lim, N., Hayashi, S., & Saeki, M. (2018a). Context-based approach to prioritize code
smells for prefactoring. Journal of Software: Evolution and Process, 30(6), Article
e1886.

ae-Lim, N., Hayashi, S., & Saeki, M. (2018b). An investigative study on how developers
filter and prioritize code smells. IEICE Transactions on Information and Systems,
101-D(7), 1733–1742.

harma, T., Efstathiou, V., Louridas, P., & Spinellis, D. (2021). Code smell detection
by deep direct-learning and transfer-learning. Journal of Systems and Software, 176,
Article 110936.

Sobrinho, E. V. d. P., De Lucia, A., & Maia, M. d. A. (2021). A systematic literature
review on bad smells-5 w’s: Which, when, what, who, where. IEEE Transactions on
Software Engineering, 47(1), 17–66.

Sotto-Mayor, B., Elmishali, A., Kalech, M., & Abreu, R. (2022). Exploring design smells
for smell-based defect prediction. Engineering Applications of Artificial Intelligence,
115, Article 105240.

Sotto-Mayor, B., & Kalech, M. (2021). Cross-project smell-based defect prediction. Soft
Computing, 25(22), 14171–14181.

Taba, S. E. S., Khomh, F., Zou, Y., Hassan, A. E., & Nagappan, M. (2013). Pre-
dicting bugs using antipatterns. In 2013 IEEE international conference on software
maintenance (ICSM) (pp. 270–279).

Tantithamthavorn, C., Hassan, A. E., & Matsumoto, K. (2020). The impact of class
rebalancing techniques on the performance and interpretation of defect prediction
models. IEEE Transactions on Software Engineering, 46(11), 1200–1219.
24
Tantithamthavorn, C., Jiarpakdee, J., & Grundy, J. (2021). Actionable analytics: Stop
telling me what it is; please tell me what to do. IEEE Software, 38(4), 115–120.

Tantithamthavorn, C., McIntosh, S., Hassan, A. E., & Matsumoto, K. (2017). An
empirical comparison of model validation techniques for defect prediction models.
IEEE Transactions on Software Engineering, 43(1), 1–18.

Tantithamthavorn, C., McIntosh, S., Hassan, A. E., & Matsumoto, K. (2019). The impact
of automated parameter optimization on defect prediction models. IEEE Transactions
on Software Engineering, 45(7), 683–711.

Tian, Y., Ali, N., Lo, D., & Hassan, A. E. (2016). On the unreliability of bug severity
data. Empirical Software Engineering, 21(6), 2298–2323.

Umer, Q., Liu, H., & Illahi, I. (2020). CNN-based automatic prioritization of bug reports.
IEEE Transactions on Reliability, 69(4), 1341–1354.

Vidal, S. A., Marcos, C. A., & Pace, J. A. D. (2016). An approach to prioritize code
smells for refactoring. Automated Software Engineering, 23(3), 501–532.

ang, D., Yang, Q., Abdul, A., & Lim, B. Y. (2019). Designing theory-driven user-centric
explainable AI. In Proc. 2019 CHI conference on human factors in computing systems
(CHI) (pp. 1–15).

idyasari, R., Prana, G. A. A., Haryono, S. A., Tian, Y., Zachiary, H. N., & Lo, D. (2022).
XAI4fl: Enhancing spectrum-based fault localization with explainable artificial in-
telligence. In Proc. IEEE/ACM 30th international conference on program comprehension
(ICPC) (pp. 499–510).

u, H., Yin, R., Gao, J., Huang, Z., & Huang, H. (2022). To what extent can code
quality be improved by eliminating test smells? In Proc. 2nd international conference
on code quality (ICCQ) (pp. 19–26).

ang, X., Yu, H., Fan, G., Huang, Z., Yang, K., & Zhou, Z. (2021). An empirical study of
model-agnostic interpretation technique for just-in-time software defect prediction.
In Proc. 17th EAI international conference on collaborative computing (CollaborateCom)
(pp. 420–438).

ao, J., & Shepperd, M. (2020). Assessing software defection prediction performance:
Why using the matthews correlation coefficient matters. In Proc. 24th international
conference on the evaluation and assessment in software engineering (EASE) (pp.
120–129).

edida, R., & Menzies, T. (2022). How to improve deep learning for software analytics
(a case study with code smell detection). In Proc. IEEE/ACM 19th international
conference on mining software repositories (MSR) (pp. 156–166).

u, X., Bennin, K. E., Liu, J., Keung, J. W., Yin, X., & Xu, Z. (2019). An empirical study
of learning to rank techniques for effort-aware defect prediction. In Proc. IEEE 26th
international conference on software analysis, evolution and reengineering (SANER) (pp.
298–309).

heng, W., Shen, T., Chen, X., & Deng, P. (2022). Interpretability application of the
just-in-time software defect prediction model. Journal of Systems and Software, 188,
Article 111245.

http://refhub.elsevier.com/S0957-4174(23)02142-5/sb58
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb58
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb58
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb58
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb58
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb58
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb58
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb59
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb59
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb59
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb59
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb59
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb60
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb60
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb60
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb60
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb60
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb61
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb61
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb61
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb61
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb61
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb62
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb62
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb62
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb62
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb62
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb63
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb63
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb63
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb63
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb63
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb64
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb64
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb64
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb64
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb64
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb65
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb65
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb65
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb65
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb65
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb66
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb66
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb66
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb66
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb66
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb67
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb67
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb67
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb67
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb67
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb68
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb68
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb68
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb68
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb68
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb69
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb69
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb69
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb70
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb70
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb70
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb70
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb70
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb71
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb71
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb71
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb71
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb71
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb72
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb72
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb72
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb73
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb73
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb73
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb73
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb73
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb74
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb74
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb74
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb74
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb74
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb75
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb75
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb75
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb76
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb76
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb76
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb77
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb77
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb77
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb78
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb78
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb78
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb78
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb78
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb79
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb79
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb79
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb79
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb79
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb79
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb79
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb80
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb80
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb80
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb80
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb80
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb81
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb81
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb81
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb81
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb81
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb81
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb81
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb82
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb82
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb82
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb82
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb82
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb82
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb82
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb83
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb83
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb83
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb83
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb83
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb84
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb84
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb84
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb84
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb84
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb84
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb84
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb85
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb85
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb85
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb85
http://refhub.elsevier.com/S0957-4174(23)02142-5/sb85

	Aligning XAI explanations with software developers' expectations: A case study with code smell prioritization
	Introduction
	Related Work
	XAI Research in SQA
	Machine Learning in Code Smell Detection and Prioritization
	Considered Features and Aspects In Code Smell Research
	Machine Learning Approaches for Code Smell Studies

	Code Smell Based Defect Prediction

	XAI Explanations and Developers' Expectations
	An Example of Misalignment in Explanation and Expectation in Defect Prediction
	Outlining Explanation and Expectation
	Motivating Example

	Dataset Construction and Developer Comment Categorization
	Dependent Variables: The Criticality of 4 Code Smells
	Independent Variables: Datasets and Extension
	The MSR and KBS Code Smell Prioritization Datasets
	The Extension of Class Functionality Features

	Developers' Comments and Our Manual Categorization

	Experimental Design
	RQ1: Building Models for Explanation
	Model Generation and Validation
	Model Diagnosing and Explanation

	RQ2: Measuring the Gap
	RQ3: Improving Feature Selection to Narrow The Gap Between XAI and Developers
	The Original AutoSpearman Feature Selection
	Enhancing AutoSpearman with Feature Priority Awareness
	Statistical tests on the significance of improvement

	Case Study Results
	RQ1: Model Diagnosis and Performance
	RQ2: The Coverage and Complexity of XAI's Explanations on Baseline Approach
	RQ3: XAI Explanations After Feature Selection Considering Developers' Expectation

	Discussions and Implications
	Explaining the Overgeneralized Size Metrics
	Meeting Functionality Concerns of Developers
	Debiasing and Adapting to Practitioners' Beliefs
	Providing Contrastive (Why-Not) Explanations for Wrong Predictions
	Using Rule-Based XAI Approaches to Prioritize Code Smells
	The Opportunities and Challenges of XAI for SQA

	Threats to Validity
	Construct Validity
	Conclusion Validity
	Internal Validity
	External Validity

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix A. Features and Projects Used for Prediction
	Appendix B. Online Appendix and Replication Package
	Appendix C. Demo Tool
	References

